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PREFACE

The methods of progress in theoretical physics have undergone
a vast change during the present century. The classical tradition

has been to consider the world to be an association of observable
objects (particles, fluids, flelds, &c.) moving about according to
definite laws of force, so that one could form a mental picture in space
and time of the whole scheme. This led to a physics whose aim was
to make assumptions about the mechanism and forces connecting
these observable objects, to account for their behaviour in the
simplest possible way. It has become increasingly evident in recent
times, however, that nature works on a different plan. Her funda-
mental laws do not govern the world as it appears in our mental
picture in any very direct way, but instead they control a substratum
of which we cannot form a mental picture without introducing
irrelevancies. The formulation of these laws requires the use of the
mathematics of transformations. The important things in the world
appear as the invariants (or more generally the nearly invariants, or
quantities with simple transformation properties) of these trans-

formations. The things we are immediately aware of are the relations

of these nearly invariants to a certain frame of reference, usually one
chosen so as to introduce special simplifying features which are un-
important from the point of view of general theory.

The growth of the use of transformation theory, as applied first to
relativity and later to the quantum theory, is the essence of the new
method in theoretical physics. Further j)rogress lies in the direction

of making our equations invariant under wider and still wider trans-

formations. This state of affairs is very satisfactory from a philo-

sophical point of view, as implying an increasing recognition of the
part played by the observer in himself introducing the regularities

that a])pear in his observations, and a lack of arbitrariness in the ways
of nature, but it makes things less easy for the learner of physics.
The new theories, if one looks apart from their mathematical setting,

are built up from physical concepts which cannot be explained in
terms of things previously known to the student, which cannot even
be explained adequately in words at all. Like the fundamental con-
cepts (e.g. ]3roximity, identity) which every one must learn on his

arrival into the world, the newer concepts of ])hysics can be mastered
only by long familiarity with their properties and uses.
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From the mathematical side the approach to the new theories

presents no difficulties, as the mathematics required (at any rate that
which is required for the developments of physics up to the present)

is not essentially different from what has been current for a consider-

able time. Mathematics is the tool specially suited for dealing with
abstract concepts of any kind and there is no limit to its power in this

field. For this reason a book on the new physics, if not purely descrip-

tive of experimental work, must be essentially mathematical. All the
same the mathematics is only a tool and one should learn to hold the
physical ideas in one’s mind without reference to the mathematical
form. In this book I have tried to keep the physics to the forefront,

by beginning with an entirely physical chapter and in the later work
examining the physical meaning underlying the formalism wherever
possible. The amount of theoretical ground one has to cover before
being able to solve problems of real practical value is rather large, but
this circumstance is an inevitable consequence of the fundamental
part played by transformation theory and is likely to become more
pronounced in the theoretical physics of the future.

With regard to the mathematical form in which the theory can be
presented, an author must decide at the outset between two methods.
There is the symbolic method, which deals directly in an abstract
way with the quantities of fundamental importance (the in-

variants, &c., of the transformations) and there is the method of

co-ordinates or rej)resentations, which deals with sets of numbers
corresponding to these quantities. The second of these has usually
been used for the i)resentation of quantum mechanics (in fact it has
been used practically exclusively with the exception of Weyl’s book
Gruppentheorie und Quantenmechaiiik .) It is known under one or

other of the two names 'Wave Mechanics’ and 'Matrix Mechanics’
according to which j^hysical things receive emphasis in the treatment,
the states of a system or its dynamical variables. It has the advan-
tage that the kind of mathematics required is more familiar to the
average student, and also it is the historical method.
The symbolic method, however, seems to go more deeply into the

nature of things. It enables one to express the physical laws in a neat
and concise way, and will probably be increasingly used in the future
as it becomes better understood and its own special mathematics gets

developed. For this reason I have chosen the symbolic method,
introducing the representatives later merely as an aid to j^ractical
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I

THE PRINCIPLE OF SUPERPOSITION

§ 1. Waves and Particles

In the application of classical electrodynamics to atomic phenomena
one meets with difficulties of a very fundamental nature, which show
that the classical theory is irreconcilable with the facts. For instance,

it is quite hopeless on the basis of classical ideas to try to account
for the remarkable stability of atoms and molecules that is required

in order that substances may have definite physical and chemical

properties. These difficulties have necessitated a modification of some
of the most fundamental laws of nature and have led to a new system
of mechanics, called quantum mechanics, since its most striking

(although not its most important) differences from the old mechanics
apparently show a discontinuity in certain physical processes and
a discreteness in certain dynamical variables.

Classical electrodynamics forms a self-consistent and very elegant

theory, and one might be inclined to think that no modification of

it would be possible which did not introduce arbitrary features and
completely spoil its beauty. This is not so, however, since quantum
mechanics, after passing through many stages and having its funda-

mental concepts changed more than once, has now reached a form in

which it can be based on general laws and is, although not yet quite

complete, even more elegant and pleasing than the classical theory

in those problems with which it deals. This is brought about by the

fact that the changes made in the classical theory are very few in

number, although they are of a fundamental nature and involve the

introduction of entirely new concepts, and are such that practically

all the features of the classical theory to which it owes its attractive-

ness can be taken over unchanged into the new theory.

The necessity for a fundamental departure from the laws and con-

cepts of classical mechanics is seen most clearly by a consideration

of experimentally established facts on the nature of light. On the

one hand the phenomena of interference and diffraction can be

explained only on the basis of a wave theory of light
;
on the other,

phenomena such as photo-electric emission and scattering by free

electrons show that light is composed of small particles, which are

called photons, each having a definite energy and momentum de-
3695 rt



2 THE PRINCIPLE OF SUPERPOSITION §1

pending on the frequency of the light. These photons appear to have

just as real an existence as electrons, or any other particles known
in physics. A fraction of a photon is never observed, so that we may
safely assume it cannot exist.

To obtain a consistent theory of light which shall include inter-

ference and diffraction phenomena, we must consider the photons as

being controlled by waves, in some way which cannot be understood

from the point of view of ordinary mechanics. This intimate con-

nexion between waves and particles is of very great generality in the

new quantum mechanics. It occurs not only in the case of light. All

particles are connected in this way with waves, which control them

and give rise to interference and diffraction phenomena under suitable

conditions. The influence of the waves on the motion of the particles

is less noticeable the more massive the particles and only in the case

of photons, the lightest of all particles, is it easily demonstrated.

The waves and particles should be regarded as two abstractions

which are useful for describing the same physical reality. One must

not picture this reality as containing both the waves and particles

together and try to construct a mechanism, acting according to

classical laws, which shall correctly describe their connexion and

account for the motion of the particles. Any such attempt would be

quite opposed to the principles by which modern physics advances.

What quantum mechanics does is to try to formulate the underlying

laws in such a way that one can determine from them without

ambiguity what will happen under any given experimental condi-

tions. It would be useless and meaningless to attempt to go more

deeply into the relations between waves and particles than is required

for this purpose.

§ 2 . The Polarization of Photons
Although the idea of a physical reality being describable by both

particles and waves, which are connected in some curious manner, is

of far-reaching importance and wide applications, yet it is only a

special case of a much more general principle, the Principle of Super-

position. This principle forms the fundamental new idea of quantum
mechanics and the basis of the departure from the classical theory.

In order to lead up to an explanation of this principle, we shall

first take a very simple special case of it, which is provided by a con-

sideration of the polarization of light. It is known experimentally
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that when plane-polarized light is used for ejecting photo-electrons,
there is a preferential direction for the electron emission. Thus the

polarization properties of light are closely connected with its corpus-

cular properties and one must ascribe a polarization to the photons.

One must consider, for instance, a beam of light plane polarized in

a certain direction as consisting of photons each of which is plane

polarized in that direction and a beam of circularly polarized light

as consisting of photons each circularly polarized. Every photon is

in a certain state of polarization, as we shall say. The difficulty is

now how we are to fit in these ideas with the known facts about the

resolution of light into polarized components and the recomposition

of these components.

Suppose, for instance, that we have a beam of plane-polarized light

passing through a polariscope and getting resolved into two com-
ponents polarized at angles of a and a+l-Tr with the direction of

polarization of the incident beam. The intensities of the two com-
ponents will be, according to classical optics, respectively cosmos and
sin^a times that of the original beam. Let us say that a photon of

the original beam is in the state of polarization 0 and a photon in

one or other of the two components is in the state a or oc-j-^rr

respectively. The question that now arises is: What must we con-

sider happens to each individual photon when it reaches the polari-

scojDe ? How do the photons in the state 0 change into photons in

the states a and ?

This question cannot be answered without the help of an entirely

new concept which is quite foreign to classical ideas. We shall there-

fore first consider another question of a different type, namely, what
will be the result of any particular experiment which one may perform
to try to determine what happens to an individual photon when it

reaches the j)olariscope. It is only questions of this type that are

really important, and quantum mechanics always gives a definite

answer to them. Any answer that may be given to our first question,

i.e. any description of the whole course of a photon during the

experiment, would be simply a device to help us to remember the

results of the experiments. We ought not to be surprised if no such
description based on classical ideas is possible.

The most direct experiment of this kind would be to use an incident

beam consisting of only a single photon and then to measure the

energy in each of the two components. The result predicted by
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quantum mechanics is that sometimes one would find the whole of
the energy in one component and the other times one would find the
whole in the other component. One would never find part of the
energy in one and part in the other. Experiment can never reveal
a fraction of a photon. If one did the experiment a large number of
times, one would find in a fraction eos^a of the total number of times
that the whole of the energy is in the ck;-component and in a fraction
sin^a that the whole of the energy is in the (a -I-Jtt)

-

component. One
may thus say that a photon has a probability cos^a of appearing in
the a-component and a probability sin^a of appearing in the (a

component. These values for the probabilities lead to the correct
classical distribution of energy between the two components when
the number of photons in the incident beam is large.
Thus the individuaHty of the photon is preserved in all cases, but

only at the expense of determinacy. The result of an experiment is

not determined, as it would be according to the classical theory, by
the conditions under the control of the experimenter. The most that
can be predicted is the probability of occurrence of each of the pos-
sible results. This lack of determinacy, which runs through the whole
of quantum mechanics and is in sharp contradiction to the classical
theory, may at first sight appear to be unsatisfactory, as implying
a departure from the law of causality. It should be remarked, though,
that if one makes anyexperimental arrangement to observe the energy
of one of the components {e.g. by reflection by a movable mirror and
measurement of the recoil momentum communicated to the mirror),
it will always be impossible subsequently to recombine the two com-
ponents to produce interference effects. The observation must in-
evitably produce, as we shall see from the general laws of quantum
mechanics, a change in phase of uncertain and unpredictable amount

.

One may therefore, as has been pointed out by Eohr,* ascribe the
lack of determinacy in the result to the uncertainty in the disturbance
which the observation necessarily makes, although one cannot inquire
closely into how it comes about. The apparent failure of causality
is from this point of view due to a theoretically necessary clumsiness
in the means of observation.

AV^e must now consider the answer to our first question and give
a description of the photon throughout the course of the experiment.
A description consisting of a continuous picture in the classical sense

* See the article by N. Bohr in Nature, p. 580, 1928.
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is not possible. The description which quantum mechanics allows us

to give is merely a manner of speaking which is of value in helping

us to deduce and to remember the results of experiments and which
never leads to wrong conclusions. One should not try to give too

much meaning to it.

It is necessary to suppose a peculiar relationship to exist between
the different states of polarization, which is such that when, for

instance, a photon is in the state 0, it may be considered as being

partly in the state a and partly in the state a+Jtt. Similarly it could

be considered as partly in state ^ and partly in state )8-j-j7r, where

^ is any other angle of polarization, or as partly in the state of left-

circular polarization and partly that of right-circular polarization.

More generally, one could consider it partly in each of two states

plane polarized in two directions that are not at right angles, though
this is seldom convenient, or one could consider it partly in each of

more than two states. There are thus many ways of describing the

photon, which are all always permissible and equally good theoreti-

cally, although, of course, the one that says the photon is entirely in

state 0 is simpler than those that say it is " distributed ’ over two or

more states. When we say that the photon is distributed over two
or more given states the descrij)tion is, of course, only qualitative,

but in the mathematical theory it is made exact by the introduction

of numbers to specify the distribution, which determine the weights

with which the different states occur in it.

One cannot picture in detail a photon being partly in each of two

states
;
still less can one see how this can be equivalent to its being

partly in each of two other different states or wholly in a single state.

We must, however, get used to the new relationships between the

states which are implied by this manner of speaking and must build

up a consistent mathematical theory governing them.

In our polarizing experiment, if we choose to consider the incident

photon as being partly in state ol and partly in state a-i-|-7T, the

action of the polariscope is then quite simple. It separates the two

components a and cc-I-Itt into two distinct beams, so that after the

photon has passed through we must say that it is partly in one beam
with the polarization a and partly in the other with the polarization

q;H-|77-. There is now no way of saying the photon is wholly in one

state, without a generalization of the meaning of a state, which will

be made later. The simplest description is the one just given, in
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which the photon is distributed over two states. Other possible

descriptions would require the photon to be distributed over three
or more states ; e.g. one could say it is partly in the first beam with
the polarization a, partly in the second beam with the polarization

^ (arbitrary), and partly in the second beam with the polarization

Such descriptions would not, however, be of value unless the
beams were subsequently passed through other polarizing instru-

ments.

Let us consider now what happens when we determine the energy
in one of the components. The result of such a determination must
be either the whole photon or nothing at all. Thus the photon must
change suddenly from being partly in one beam and partly in the
other to being entirely in one of the beams. This sudden change may
be counted as due to the disturbance of the photon which the observa-
tion necessarily makes. It is impossible to predict in which of the
two beams the photon will be found. Only the probability of either

result can be calculated from the previous distribution of the photon
over the two beams.

This way of describing the photon during the course of the
experiment leads to one important conclusion, namely, the above-
mentioned circumstance that when once the energy in one of the
components has been determined, it will be impossible subsequently
to bring about interference between the two components. When the
photon is partly in one beam and partly in the other, if the two beams
are superposed interference can take place, as the mathematical
theory will show. This possibility disappears when the photon is

forced entirely into one of the beams by the energy observation. The
other beam then no longer enters into the description of the photon,
so that if any experiment is subsequently performed on the same
photon it will count as being entirely in the one beam in the ordinary
way.

W^e have obtained a description of the photon throughout the
experiment, which rests on a new rather vague idea of a photon
being partly in one state and partly in another. The reader may,
perhaps, feel that we have not really solved the difficulty of the con-
flict between the waves and the corpuscles, but have merely talked
about it in a certain way and, by using some of the concepts of waves
and some of corpuscles, have arrived at a formal account of the
phenomena, which does not really tell us anything that we did not
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know before. The difficulty of the conflict between the waves and
corpuscles is, however, actually solved as soon as one can give an
unambiguous answer to any experimental question. The only object

of theoretical physics is to calculate results that can be compared with
experiment, and it is quite unnecessary that any satisfying description
of the whole course of the phenomena should be given.

With regard to the objection that the present description does
not seem to take us any farther than we could, perhaps, have gone
with very hazy notions of the relations between photons and
electromagnetic waves, such as, for instance, those one had before
the discovery of quantum mechanics, it should be remarked that the
conclusion obtained above, that when once the energy of one of the
beams has been measured subsequent interference between the beams
would be impossible, could not have been drawn from very hazy
notions, and also that the present discussion is reaUy too qualitative
for the advantages of the new theory to show up clearly. In § 5 the
discussion on the nature of light will be renewed on a slightly more
quantitative basis, which will bring out definitely the difference

between the present theory and the previous hazy notions. For many
elementary optical experiments, moreover, the hazy notions would
suffice to give answers to questions concerning the results of observa-
tions and in such cases quantum mechanics would not give any
further information. The object of quantum mechanics is to extend
the domain of questions that can be answered and not to give more
detailed answers than can be experimentally verified

.

§ 3. Superposition and Indeterminacy
The new ideas that we have introduced in our description of the
photon must be extended and applied to any atomic system, i.e. to
any set of electrons and atomic nuclei interacting with each other
and perhaps also with photons. We must first generalize the meaning
of a ‘state ’ so that it can apply to any atomic system. Corresponding
to the case of the photon, which we say is in a given state of polariza-

tion when it has been passed through suitable polarizing apparatus,
we say that any atomic system is in a given state when it has been
prepared in a given way, which may be repeated arbitrarily at will.

The method of preparation may then be taken as the specification of

the state. The state of a system in the general case includes any
information that may be known about its position in space from the
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way in which it was prepared, as well as any information about its

internal condition.

We must now imagine the states of any system to be related in

such a way that whenever the system is definitely in one state, we
can equally well consider it as being partly in each of two or more
other states. The original state must be regarded as the result of

a kind of su%>erposition of the two or more new states, in a way that

cannot be conceived on classical ideas. Any state may be considered

as the result of a superposition of two or more other states, and indeed

in an infinite number of ways. Conversely any two or more states

may be superposed to give a new state, even also when they refer

to difierent positions of the system in space. Thus in our previous

example of the polarization experiment, when the photon is partly

in the one beam with the polarization ol and partly in the other with

the polarization we may still count it as being entirely in a

certain single state. In fact it still satisfies the definition of having
been prepared in a definite way which may be repeated at will.

When a state is formed by the superposition of two other states,

it will have properties that are in a certain way intermediate between
those of the two original states and that approach more or less closely

to those of either of them according to the greater or less ‘weight’

attached to this state in the superposition process. The new state is

completely defined by the two original states when their relative

weights in the superposition process are known, together with a cer-

tain phase difierence, the exact meaning of weights and phases being
provided in the general case by the mathematical theory of the next
chapter. In the case of the polarization of a photon their meaning
is that provided by classical optics, e.g. when two perpendicularly
plane polarized states are superposed with equal weights, the new
state may be circularly polarized in either direction, or linearly
polarized at an angle Jtt, or else elliptically polarized, according to
the phase difference. This, of course, is true only provided the two
states that are superposed refer to the same beam of light, i.e. all

that is known about the position and momentum of a photon in
either of these states must be the same for each.

It is convenient at this stage to modify slightly the meaning of the
word state’ and to make it more precise. We must regard the state
of a system as referring to its condition throughout an indefinite
period of time and not to its condition at a particular time, which
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would make the state a function of the time. Thus a state refers to
a region of 4-dimensional space-time and not to a region of 3-dimen-
sional space. A system, when once prepared in a given state, remains
in that state so long as it remains undisturbed. This does not, of
course, imply that it is not undergoing changes which could be
revealed by experiment. In general it will be following out a definite

course of changes, predictable by the quantum theory, belonging to
that state. It is sometimes purely a matter of convenience whether
we are to regard a system as being disturbed by a certain outside
influence, so that its state gets changed, or whether we are to regard
the outside influence as forming part of and coming in the definition

of the system, so that with the inclusion of the effects of this influence
it is still merely running through its course in one particular state.

An illustration of this is our previous example of a photon being
passed through a polariscope and becoming partly in each of two
beams. Either we may consider the polariscope as disturbing the
photon, so that after it has passed through it is in a different state

;

or else we may consider the polariscope as forming part of the ' field
’

in which the photon is moving, so that it is in the same state when
it is in the incident beam as later when it is partly in each of the
two component beams, and it is just following out its course in that
state. The general laws of quantum mechanics apply equally well
for either of these meanings of the state. There are, however, two
cases when we are in general obliged to consider the disturbance as
causing a change in state of the system, namely, when the disturbance
is an observation and when it consists in preparing the system so as
to be in a given state.

With the new space-time meaning of a state we need a corre-

sponding space-time meaning of an observation. This requires that
the specification of an observation shall include a definite time at
which the observation is to be made, or at which the apparatus used
in making the observation is to be set in motion, relatively to the
time when the system was prej^ared. It should be noticed that it has
a meaning to consider an observation being made on a system in a
given state before this state is lorepared. If the system is prepared
at time so that after time it is in a given state, we can imagine
what it would have to be like before time in order that, if left

undisturbed, it may become in the given state after time Iq. Thus
we can imagine the given state being produced backwards in time

3596 ^
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and can give a meaning to an observation being made before time Iq

on the system in this state.

The introduction of indeterminacy into the results of observations,

which we had to make in our discussion of the photon, must now be

extended to the general case. When an observation is made on any
atomic system that has been prepared in a given way and is thus in

a given state, the result will not in general be determinate, i.e. if the

experiment is repeated several times under identical conditions

several different results may be obtained. If the experiment is

repeated a large number of times it will be found that each particular

result will be obtained a definite fraction of the total number of

times, so that one can say there is a definite probability of its being

obtained any time the experiment is performed. This probability the

theory enables one to calculate. In special cases this probability may
be unity and the result of the experiment is then quite determinate.

The indeterminacy in the results of observations is a necessary con-

sequence of the superposition relationships that quantum mechanics

requires to exist between the states. Suppose that we have two states

A and B such that there exists an observation which, when made on
the system in state is certain to lead to one particular result, and
when made on the system in state J5, is certain not to lead to this

result. Two such states we call orthogonal. Suppose now that this

observation is made on the system in a state formed by superposition

of A and B. It is impossible for the result still to be determinate

(except in the special case when the weight of A or B in the super-

position process is zero). There must be a finite probability jp that

the result, that was certain for state A, will now be obtained and
a finite probability 1—

p

that it will not be obtained. By continuously

varying the relative weights in the superposition process we can get

a continuous range of states, extending from pure A to pure B, for

which the probability of the result, that was certain for state A,
being obtained varies continuously from unity to zero.

It was mentioned above that an observation is not specified unless

the time when it is made is given. In special cases it may so happen
that the result of the observation, or the probability of any particular

result being obtained, is independent of this time. If the state of the

system is such that this is so for every observation that could be
made on the system, then the state is said to be a stationary state and
we should picture it as one in which the conditions are not varying.
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The possibility in quantum mechanics of superposing states to get

new states is connected with the fact that in the mathematical theory

the equations that define a state are linear in the unknowns. It is

not unnatural that one should try to establish analogies with systems
in classical mechanics (such as vibrating strings or membranes),
which are governed by linear equations and for which, consequently,

a superposition principle holds. Such analogies have led to the name
‘Wave Mechanics’ being sometimes given to quantum mechanics.

It must be emphasized, however, that the superposition that occurs in

quantum mechanics is of an essentially different naturefrom that occurr-

ing in the classical theory. The analogies are therefore very mis-

leading. Their inadequacy may be seen from the following special

case. Suppose one compares the states of an atomic system with the

states of vibration of a membrane. If one superposes any state of the

vibrating membrane with itself, the result is a new state of double

the amplitude. On the other hand, if one superposes an atomic state

with itself according to quantum mechanics, the resulting state will

be precisely the same as the original one. There is nothing in the

atomic case that is analogous to the absolute value of the amplitude,

as distinct from the relative amplitudes of different points, of the

vibrating membrane.

§ 4. Compatibility of Observations
In general a system is disturbed when an observation is made on it,

so that after the observation it is no longer in the same state as

before. Only when the initial state and the observation are such that

there is a probability unity, i.e. a certainty, for one particular result

is it possible that the observation may produce no change of state.

The necessity for this conclusion may be seen from the following

argument.

Suppose that there is a probability p for a given result being

obtained from the observation. Consider one occasion on which
this result was actually found and suppose the observation was
repeated immediately afterwards on the system in the state in which
it was left by the first observation. There must have been a proba-

bility unity for the given result being obtained a second time, since

we may assume the system could not have changed in the infinitely

short time between the two observations. Thus while the first state

is such that there is a probability p for a given result from a certain



12 THE PRINCIPLE OF SUPERPOSITION §4

observation, the second state {i.e. the one in which the system was

left hy the first observation) is such that there is a probability unity

for this same result from a practically equivalent observation. Hence

the second state must differ from the first when p differs from unity

,

since the probability of a result is quite definite for each state. It

must be understood that the second state here considered is the one

that arose on that particular occasion referred to above when the

first observation was found to give the particular result desired.

There will be a different second state corresponding to each diffei'ent

result for this observation. They must all be different from the initial

state when p differs from unity.

Hence when once an observation of a system in a given state has

been made, one cannot in general make a second observation and

suppose it to apply to the same state. The first observation spoils

the state of the system, which must then be prepared again before

one can make the second. The two observations may, however, be

such that, although the first one alters the state of the system, yet

it does so in such a way as not to make any difference to the proba-

bility of any given result being obtained with the second. By the

probability of a given result being obtained with the second is here

meant its probability at the beginning of the experiment, before one

knows what the result of the first observation is, and not its proba-

bility after a particular result has been obtained with the first

observation. Two observations for which this is so when they are

made (or at least when the first is made) with the minimum of dis-

turbance allowed by theory, which can be attained in practice only

under the most favourable conditions, are called compatible. Three

or more observations are called compatible when any two are com-
patible. Two or more observations may be compatible only with

respect to one particular state as initial state before any of the

observations, or they may be compatible with respect to all initial

states. In future when it is said that two or more observations are

compatible, the second alternative is to be understood unless the

contrary is stated.

The condition for the compatibility of two observations is, according

to the laws of quantum mechanics, a symmetrical condition between them .

If one of two compatible observations, say, is made at tlie time
tj^ and the other, oc^ say, at the time which is later than t^, then,
according to the definition given above, the probability of a given
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result being obtained for must be the same whether this observa-
tion is made on the system in the initial state or in the state ensuing
after observation ol^. The symmetry condition now requires that the
probability of a given result being obtained for must be the same
whether this observation is made on the system in the initial state
or in the state ensuing after observation ol^, it being necessary to
suppose this latter state, which is prepared at time to be produced
backwards in time, in the way mentioned in the preceding section, in
order that the observation aj at time % niay be made on it. By the
probability of a result for the state ensuing after a certain observa-
tion, is meant in each case the average probability for each state that
can ensue after this observation, each of these states being weighted
in the averaging process with the probability that it does ensue after

this observation.

It has been pointed out that the state of a system after any
observation has been made on it is such that this observation, if

made on the system in this final state, would for a certainty give one
particular result. Suppose now that a number of compatible observa-
tions 0:1, 0:2, ... are made on the system. Then the final state must
be such that, if any of the observations is made on the system in
this final state, there will be a certainty for one particular result,

since there was a certainty for one particular result as soon as the
observation was made in the preparation of the final state, and
this will not be aflected by the subsequent observations . .

. ,

owing to the compatibility condition. The existence of states for

which the result of any of the observations is a certainty forms one
of the main j)roperties of compatible observations. The order of the
observations need not, of course, be their order in time, since we are

allowed to consider an observation being made on a state before it

is prepared.

The case of greatest interest of the compatibility of two observa-
tions is when they both refer to the same instant of time. The com-
patibility condition is now that if either is made a very short time
before the other, the probability of any given result being obtained
with the second shall be the same as if the first had not been made.

It is often convenient to count two or more compatible observa-

tions, particularly when they are simultaneous, as a single observa-

tion, the result of such an observation being expressible by two or

more numbers. We shall frequently have to consider the greatest
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possible number of independent compatible simultaneous observa-
tions being made on a system and shall, for brevity, call such a set

of observations a maximum observation. When a maximum observa-

tion is made on a system, its subsequent state is completely determined
by the result of the observation and is independent of its previous state.

This may be considered as an axiom, or as a more precise definition

of a state.

The state of a system after a maximum observation has been made
on it is such that there exists a maximum observation (namely, an
immediate repetition of the maximum observation already made)
which, when made on the system in this state, will for a certainty
lead to one particular result (namely, the previous result over again).

Any state can be specified only as the state ensuing after a given
maximum observation has been made for which a given result was
obtained, or in some equivalent way. We can therefore draw the
conclusion that for any state there must exist one maximum observa-
tion which will for a certainty lead to one particular result, and
conversely, if we consider any possible result of a maximum observa-
tion, there must exist a state of the system for which this result for

the observation will be obtained with certainty.

§ 5 . Further Discussion on Photons
When quantum mechanics is applied to a system composed of simply
a freely moving corpuscle, the equations that define a state of the
system are, as we shall find from the mathematical theory, the
ordinary equations for wave motion. It is this circumstance that
gives to the corpuscle many of the properties of waves and allows us
to consider a corpuscle in a given state as associated with, or controlled

^ given wave. In order to show more definitely the nature of the
relations between thewavesandthe corpuscle, a typicalexample will be
given of the conflict between the wave and the corpuscular theories
of fight and of the solution which quantum mechanics provides.

Consider a beam of light to be split into two components of equal
intensity, which are made to interfere. According to the old corpus-
cular theory we would say that each of the two components contains
an equal number of photons and we should then require that a photon
in one component could interfere with one in the other. Under certain
conditions they would have to annihilate one another, and under
others to produce four photons. This contradicts the idea of photons
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being discrete particles and is, besides, in disagreement with the con-

servation of energy, which should hold for each process in detail and
not be merely statistically true.

The answer that quantum mechanics gives to the difEculty is that

one should consider each photon to go partly into each of the two
components, in the way allowed by the idea of the superposition of

states. Each photon then interferes only with itself. Interference

between two different photons can never occur. The solution of

Maxwell’s equations that forms the wave picture of the phenomenon
represents one of the photons and not the whole assembly of photons.

The relative intensities that this solution gives for the light at dif-

ferent points determine the relative probabilities of that photon being

found at these points when an experiment is made to find its position.

Only the relative intensities at different points are of importance

;

the absolute intensity has no interpretation. One must not try to estab-

lish any connexion between the absolute intensity of the waves and
the total number of particles, which is in sharp distinction to the

older ideas of the relations between waves and particles.

The quantum-mechanical views do not, of course, get over the

difficulty of enabling us to picture something having properties be-

tween those of waves and corpuscles, but they serve to remind us,

by their way of saying a photon is partly in one component and
partly in the other, of the close connexion between the components
and so prevent us from intuitively drawing wrong conclusions, as we
do on the older views when we picture each component as having its

own photons. For instance, we are reminded, by the requirement

that the total i)robability of a photon being anywhere must be and
must remain unity, that in whatever way the two component beams
interfere, if they neutralize each other in one place they must rein-

force each other in another so that conservation of energy is x:)re-

served. We thus get into no difficulty with the detailed conservation

of energy.

§ 6. Definition of Superposition
A definition of the sui:)erx)osition of states will now be given. We say

that a state A may be formed by a superposition of states jB and C when,

if any observation is made on the system in state A leading to any result,

there is a finite probability for the same result being obtained when the

same observation is made on the system in one {at least) of the two states
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B and C. The Principle of Superposition says that any two states B
and G may be superposed in accordance with this definition to form

a state A and indeed an infinite number of different states A may
be formed by superposing B and G in different ways. This principle

forms the foundation of quantum mechanics. It is completely

opposed to classical ideas, according to which the result of any

observation is certain and for any two states there exists an observa-

tion that will certainly lead to two different results.

Prom our definition of superposition some elementary theorems

follow immediately. For example, the states B and G themselves are

particular cases of states formed by superposition of B and G . Again,

if we superpose two states A and B obtaining a state P, which is then

superposed on another state C, the resulting state Q will have the

property that, if any observation is made on the system in this state

leading to any result, there will be a finite probability of this same

result being obtained when the observation is made on the system

in one of the two states P and G, and hence there must be a finite

probability of this result being obtained when the observation is

made on the system in one of the three states A, B, and G. Thus

the property possessed by the state Q is symmetrical in the three

states A, B, and G, so that when superpositions are made successively

their order is unimportant. This, of course, is necessary for the word
‘superposition’ to be suitable for describing the relations between
the states.

Another example of a deduction from the definition of superposi-

tion is the following : If an observation of the system in a state A is

certain to lead to one particular result and if this observation for

another state B is certain to lead to the same result, then the observa-
tion is also certain to lead to this result for any state obtained by
superposition of A and B. This is because it cannot lead to any
other result, as the probability of this other result for both the states
A and B is zero.

One could proceed to build up the theory of quantum mechanics
on the basis of these ideas of superposition with the introduction of
the minimum number of new assumptions necessary. Although this
would be the logical line of development, it does not appear to be
the most convenient one, as the laws of quantum mechanics are so
c osely interconnected that it would not be easy, and would in any
case be somewhat artificial, to separate out the barest minimum of





II

SYMBOLIC ALGEBRA OE STATES AND OBSERVABLES

§ 7 . Addition of States

We introduce certain symbols which we say denote physical things

such as states of a system or dynamical variables. These symbols

we shall use in algebraic analysis in accordance with certain axioms

which will be laid down. To complete the theory we require laws

by which any physical conditions may be expressed by equations

between the symbols and by which, conversely, physical results may

be inferred from equations between the symbols. A typical calcula-

tion in quantum mechanics will now run as follows: One is given

that a system is in a certain state in which certain dynamical

variables have certain values. This information is expressed by equa-

tions involving the symbols that denote the state and the dynamical

variables. From these equations other equations are then deduced

in accordance with the axioms governing the symbols and from the

new equations physical conclusions are drawn. One does not any-

where specify the exact nature of the symbols employed, nor is such

specification at all necessary. They are used all the time in an

abstract way, the algebraic axioms that they satisfy and the con-

nexion between equations involving them and physical conditions

being all that is required. The axioms, together with this connexion,

contain a number of physical laws, which cannot conveniently be

analysed or even stated in any other way.

We denote each state of a dynamical system by a symbol

Different states may be distinguished by suffixes, e.g. 'Ar-

a state ^pQ may he formed by superposition of the states ipi and ip2,

we express this relation between the states by an equation of the type

IpQ = C-j^lp^-\-C2p2’

where and are numbers, which may be imaginary or complex.

The different states that may be formed by the superposition of ipi

and ip2 given by different coefficients c^, Cg. Any two ip-symbols

denoting any two states may be added in this way with arbitrary coeffi-

cients Cl and C2 and the sum will always be another j/f-symbol denoting

a state that can be formed by superposition of these two states,

except in the special case when this sum is zero. The usual algebraic
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axioms of addition are assumed to hold, i.e. the commutative axiom

and the associative axiom

(Cij/fi+ C2l/f2)4-C3l/f3 = Cl l/r^4- (021^2+ ^3 ^As)-

The first of these axioms implies that superposition of two states is

a symmetrical process between them, which is obvious from the de-

finition of § 6, while the second implies the theorem, which was proved
in § 6, that in successive superpositions the order is unimportant.

Our assumptions so far are thus consistent with the definition of

superposition. They do, however, go farther than this definition and
contain new physical laws. Tor example, we can infer that if the

state j/tq may be formed by superposition of and j/fg so that equa-
tion (1) holds, then (provided c^ =^ 0) may be formed by super-

position of t\}Q and The condition of superposition (1) is, in fact,

symmetrical between and This could not have been de-

duced from the definition of superposition in § 6. When three states

are symmetrically related in this way, we say that they are dejpendent.

We can extend the definition and say that any number of states

Pn dependent or independent according to whether there

is or is not a relation between them of the type

<^i^id-C2iA2'4“- • •+ c^j/f^ = 0. (2)

It has been mentioned that when a state is superposed on itself,

the resulting state is the same as the original one. Thus our symbolic

scheme should be such that pi-{-pi or 2p-^ denotes the same state as

p^. Actually we make a more general assumption than this, namely,

that cp^ denotes the same state as p^ where c is any number, not

zero, and can be imaginary or complex. The nature of the connexion

between the states and the symbols p required by this assumption

may perhaps be more easily understood if one pictures the j/#’s as

vectors in some space with a sufficiently large number of dimensions.

The number of dimensions required is equal to the number of inde-

pendent states that the system has, which is in general infinite. An
equation of the type (1) or (2) can now be regarded as a vector equa-

tion. The vectors are, of course, in general complex. A state must now
be considered as completely specifiedby the direction ofa vector. Vectors

of different lengths and the same direction specify the same state.

We now introduce another set of symbols p^, p^, also denoting

states. Any state denoted by a i/t-symbol p^ can be equally well
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denoted by a -symbol having the same suffix. When the i/f’s that

denote three states satisfy (1), the (j&’s that denote these states are

assumed to satisfy
, ^ , /ax

where the bar over a number denotes its conjugate complex. The

^’s are also assumed to satisfy the commutative and associative laws

of addition and to have all the other properties that the j/j’s have,

e.g. c<f)^ denotes the same state as and we may define a number
of states denoted by <j>^, to be independent when there is no

relation between them of the type

The theory will throughout be symmetrical between the <f>’s and ?/f’s.

The sum of a ^ and a ip has no meaning and will never appear in

the analysis.

The introduction of a second set of symbols to denote the states

may appear to be superfluous, but actually it is necessary when one

allows complex coefficients in order to preserve the symmetry
between the two roots of — 1. A superposition process such as (1),

which is specified by the two complex numbers and Cg, must be

equally well specifiable by the conjugate complex numbers and
so that we are obliged to introduce equation (3) and treat it on the

same footing as (1).

We have seen that a
<f>-

or i/f-symbol may be multiplied by an

arbitrary number and then still denotes the same state. Thus we
can put

ipj.
, (jig bg *

(4 )

where the a’s and 6’s are arbitrary numbers, not zero, and consider

the ?/f*’s and ^*’s as denoting the states instead of the i/(’s and ^i’s.

The a’s and 6’s must, however, satisfy certain conditions in order

that the connexion between equations (1) and (3) may hold also for

the starred symbols. These equations give

lAo* = Ciai/ao.*/fi*+C2a2/ao.j/»2*

^0* = Cl 0262/60-

In order that the coefficients in the equation may be conjugate
complex to the coefficients in the i/f* equation we must have

6,/6o = djd^ ^2/^0 = «2/S-
Hence = fa^

where / is a number independent of r.

(
5 )
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The connexion between equations (1) and (3), and the condition

(5) governing the most general transformation (4) that preserves this

connexion, lead one to consider each <j>j. as being proportional to the

conjugate imaginary quantity of the corresponding xp^, the propor-

tionality becoming an equality if a transformation of the type (4),

(5) is applied with the correct value for /. Thus if we adopt the

vector picture of the j/f’s we may take each i/f,. to be the conjugate

imaginary vector to the corresponding It should be remarked,

though, that the conjugate imaginariness of the j/»’s and cj>s is not of

quite the same nature as that of ordinary complex numbers, since

we cannot give any meaning to the splitting up of a i/f into its real

and pure imaginary parts. In the splitting up of an ordinary complex

quantity into its real and pure imaginary parts, we obtain the real

part by taking the average of the quantity itself and its conjugate

imaginary, but we cannot do this for a ^-symbol since we are not

allowed to add together a ijj and a cp. Thus the relation between a ip

and the corresponding <p is not quite the same as the relation between

two conjugate imaginary numbers, and in order that this difference

may be remembered we shall reserve the words conjugate imaginary

for describing relations between 0’s and 0’s and use the words con-

jugate complex instead for quantities such as numbers which can be

split up into real and pure imaginary parts. Ordinary vectors, of

course, like numbers, can be split up into real and pure imaginary

parts, so that the picturing of 0’s and 0’s as vectors is not strictly

correct, although it is all the same sometimes useful. We must
therefore remember, when using the vector picture, that, in so

far as it would allow one to add together two vectors repre-

senting a 0 and a 0 respectively, it is imperfect and gives to the

0’s and 0’s more properties than quantum mechanics requires or

allows.

§ 8. Multiplication of States

Up to the jiresent the only functions of the 0’s and 0’s that we have

allowed are linear functions of the 0’s alone, or of the 0’s alone, with

numerical coefficients. We now suppose that any 0 and <p have a pro-

duct, which is a number, in general complex. This product must always

be written 00, i.e. the 0 must be on the left-hand side and the ip on the

right. Products such as 00, 0i02j 0i 025 have no meaning and will

never appear in the analysis.
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The products (j>ip are assumed to satisfy the distributive axiom of

multipUoation, i.e. ^ \ (6)

H’Pl+’I'l.) = ^"/'l+^'/'2=
J

together with, the axiom that

(^(Cj/r) = (c<^)iA = (7)

where c is any number. In the vector picture we can take the number

to be the scalar product of the two vectors
(f>
and if/. The con-

ditions (6) and (7) are then satisfied. The vector picture, however,

allows us also to form the products ^1 ^2 - Thus we again

find the vector picture giving more properties to the tp’s and ^’s than

required in quantum mechanics.

In conformity with our view of regarding a ip and the corresponding

<f>
as conjugate imaginary quantities, we now make the following two

assumptions:
, ,

—

y

/o\

<f>T9s=

From the first of these, by taking s = r, we can deduce that

real. The second now states that positive. To examine the

legitimacy of these assumptions, let us consider the effect of a trans-

formation of the type (4), (5). Equation (8) gives

and the inequality (9) gives

> 0 .

From these relations we obtain

provided / is real and positive. Thus a restriction must be imposed

on the transformations (4), (5) in order that (8) and (9) may remain

invariant.

In future we shall keep to the view that each <p is equal to, and

not merely proportional to, the conjugate imaginary of the corre-

sponding tfj, as the more general view, which is theoretically j)er-

missihle, does not lead to anything of interest. This means that our

equations need he invariant under transformations of the type (4)

only provided = d^, i.e. provided in (5) / = 1. The restriction on
the transformations of the type (4) which is necessary for (8) and

(9) to he invariant is included in this one.
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We shall often assume that a ifj^ and the conjugate imaginary
(f>^

= 1
.

when they will be called normalized to unity

^

or simply normalized.

The inequality (9) shows that it is always possible to normalize a i/f

or a </) by multiplying it by a number. The modulus of this number
is determined buVnot its argument.

A corollary of^(9) is that if, for all ^

(
10 )

/ = 0 ,

then / <
5
^,^ == 0.

This follows/from the fact that if is not identically zero, its con-

jugate imaginary will be a i/f that does not satisfy = 0. There

is, of course, also the corresponding theorem with ^’s and ^’s inter-

changed.

The theorem will now be proved that if 4>j. and are normalized,

\4’M < 1 . (
11 )

the case of equality occurring only when and denote the same

state. Let a be any real number and apply the inequality (9) to the

state denoted by ip^— or This gives

or > 0.

Hence, using the normalizing conditions — PsPs
~ obtain

^'^'"PrPs+ ^~'^''PsPr < 2 .

The second term on the left-hand side is just the conjugate complex

of the first. Hence the real part of e'^^^p^p^ is less than unity. Since

this must hold for all values of a we must have the modulus of p^ps
less than unity. This gives the required result (11), when we take

into account the fact that the inequality becomes an equality if

pj.
— e^^pg — 0 for some value of u, which means that p^ and pg denote

the same state.

Our introduction of products of p's with p's has so far been entirely

a mathematical question, with no physical implications. A physical

meaning will now be given to the xu'oduct p^ pg. Consider that maxi-

mum observation of the state p,. for which there is a certainty of a

particular result being obtained. We have seen that such a maximum
observation always exists. Suppose now this maximum observation

to be made on the system in the state pg. There will be a certain

probability of the same result being obtained, which we call the
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probability of agreement of with It is a number that depends

only on the two states and <56^. In particular it is unity if the

same state as cf,^. We now assume that the probability of agreement

of xp^ with 4^ is equal to \xPsi>r\'' when 4^ and 4, are normalized. It has

just been proved that this value for the probability can never exceed

unity, so that the assumption is reasonable. Again, the only trans-

formation of the type (4 )
that one can make on a normalized ^ or

without destroying its normalization is multiplication by a num
^

er

of modulus unity. This will not change the value of \4r4^^s\
whic 1

thus has the necessary invariance for its physical meaning to e

permissible.
7

When we give this physical meaning to the product of a <jE» and

a 4 the axioms and assumptions (6), (7), (8), (9) become, to a certain

extent, physical laws, as physical consequences can now be deduced

from them. Tor instance, from (8) one can deduce that the pro a

bility of agreement of 4s with 4r equals that of 4r with 4s'

from (6) and (7) one can calculate how the probability of agreemen

of a state 4q with a state c^4i'^^z42 formed by the superposition o

4i and 42 varies with the coefficients and c^. Let us take the case

when 4i 4^ orthogonal, i.e. when there exists an observation

which is certain to lead to different results for the two states, so that

their probability of agreement is zero. This requires that

4i4^2
~

In order that o^4i^^2.42. niay be normalized as well as 4i *^2 we

must have
1 = (Ci(j&i-f-C2^2)(‘^l’/'l"!“‘^2’/'2)

If we now take 4o orthogonal to i/>2 ,
we find for the probability of

agreement of 4o with Ci4i-^<^242 value

\4o{^i4i^<^242)\^ = \4o^l4l\^ = l^ll^ \
=

which is |ci|^ times the probability of agreement of 4o with 4i‘

result as it stands is not a physical one, since we have no other

physical meaning for \c-^\^ which we can equate to the ratio of the

probability of agreement of with C2^4x~^^242 that of 4o with 4v
The fact that this ratio is independent of the state 4o provided it is

orthogonal to 42 is, however, a physical result and is an example of

the physical conclusions contained in the axioms (6) and (7).
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We see further that these axioms give physical meanings to the
coefficients occurring in a superposition process, or at least to the
squares of their moduli. The simplest such physical meanings are

obtained when we put ipQ equal to or j/fg in the above example.
This gives the result that |ci|^ is the probability of agreement of

Cl with ipi and is that of i/fi+C2 ^2 with j/fg. The sum of

these two probabilities of agreement is unity, as could have been
inferred from the definition of superposition of § 6 . We may call

|cil^ and Icg]^ the weights with which ipi and tp2 occur in the super-

position process. The state Cixjj-i-^c^^^ is not completely determined
by these weights, as a phase factor, namely, the argument of c^/cg

is also necessary. This phase has no such simple physical meaning
as the weights.

§ 9 . Algebra of Observables
We must now introduce dynamical variables into the analysis. In
classical mechanics a dynamical variable, for any state of the system,

is given by a particular function of the time and is thus something
that refers to all times. In the quantum theory a dynamical variable

is no longer given by an ordinary function of the time, although it

must still be something that refers to all times if it is to be the
analogue of a classical dynamical variable. In quantum mechanics
it is more convenient to deal with sometliing that refers to one par-

ticular time instead of to all times, analogous to the value of a
classical variable at a particular instant of time. We shall call such
a quantity an observable. We can now say, in both classical and
quantum mechanics, that any observation consists in measuring an
observable and the result of such an observation is a number. The
measurement of a dynamical variable for a particular state would in

the classical theory give as result a function of the time and would
in the quantum theory in general have no meaning.
We now denote each observable by a symbol. Thus the value of

a Cartesian co-ordinate of an electron at a particular time ti would be
an observable and could be denoted by the symbol x{ti). A dynami-
cal variable, such as x{t), may be regarded as an observable that

depends on a parameter t which denotes the time. The symbols that

denote observables will be used in the analysis along with the symbols
that denote states, in accordance with certain rules and axioms that

will now be given.
3695 n
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A.ny symbol a denoting an observable can be multiplied into any
symbol ijj denoting a state, giving a product, which must he written oajj

with the ip factor on the right-hand side. This product is of the nature

of a ip and thus denotes a state and can be added to other ^’s. In the

vector picture of the ip^s we should say that an observable oc is an
operator which can be applied to any vector p to give another vector

<xip. We assume the distributive axiom of multiplication, i.e.

and we also assume
Cx{Clp) = C{oHp)

(12 )

(13)

where c is any number. In the vector picture this means that the

operator a is a linear operator and thus consists of rotations and
imiform extensions or compressions applied to the vector field. The
multiplication of the i/f’s by a number is an operation on them which
satisfies these conditions, so that an ordinary number may be re-

garded as a special case of an observable. Its physical meaning will

be discussed later (see § 11).

If an observable oc is such that oLip — 0 for all ip, then we assume
that a = 0. This means that an observable is completely determined
when its product with an arbitrary ip is given, since if we have two
observables whose product with an arbitrary ip is the same, their

difference must vanish. We now define the sum ^.wo ob-

servables Oil and odg by the condition

(odi-f-aa)^ = (14)

for all ip. The commutative and associative laws for the addition of

observables follow at once from this definition and from the corre-

sponding laws for the addition of i/f-symbols. We further define the
product of two observables and by the condition

= 0L^{0C^p) (15)

for all ip. The associative and distributive laws for the multiplication

of observables follow at once from the definition, e.g. for tlie asso-

ciative law we have

[(Q:ia2)“3]’A = («i“2)(“3»A) = a:i[a2(«3 *A)]

= ai[(a2 a3)i/<] = [ai(a2 q:3)]»A

and since this holds for all ^ we must have

(aia2)Q:3 =
However, the commutative law for the multiplication of observables in

general does not hold, i.e. in general is not equal to cegodi- In the
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special case when is equal to ol^ we say that commutes with

0^2 or that oc^ and ag commute. We say that three or more observables

commute when each commutes with all the others.

Since the theory is to be symmetrical between the i/f’s and the <^’s

it must be possible to multiply any observable a into any (jS-symbol.

The product, which we always write as with the ^ on the left-

hand side, must be of the nature of a (/> and thus be capable of

denoting a state and of being added to other ^’s. Corresponding to

(12) and (13) we must have

and {c^)cx — c{<f>oc).

We require one more axiom in our symbolic algebra, namely, an
associative axiom of multiplication which says that

{<f>0c)lp —
SO that either of these numbers may be written as without

brackets.

This final axiom enables us to prove that the sum or product of

two observables, defined by (14) or (15), is the same as the sum or

product defined in the analogous way with ^’s instead of i/»’s, i.e. by

(/•(a^+aa) = + (lb)

or (f>{oL^0i2) = {<f>Oi^)(X2

for all cf). In the case of the sum, for instance, if we take the defini-

tion (14) we can infer from it, with the helj) of (6), that

or ~ ^

for all
(f)
and tp. Hence from (10) we must have

'5^(“1+«2 )

—

which is the required result (16). The case of the product is quite

similar. A further similar argument enables one to deduce, from the

assumption that if ocip = 0 for all ip then a = 0, the result that if

Pa = 0 for all p then a = 0.

§ 10. Conjugate Complex Observables
It is convenient to count sums and products of any observables as

other observables. This involves, as we shall see shortly, an extension

of the meaning of an observable to include the analogues of complex
functions of classical dynamical variables, or rather the values of
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such complex functions at specified times. An observable is thus not
necessarily a quantity capable of direct measurement by a single

observation, but is a theoretical generalization of such a quantity.
More generally it is convenient to count any operator that can be

multiplied into the i/r’s and in accordance with the foregoing
axioms as an observable. Thus one can define an observable oc by
specifying the values of aip for all ip, and these values may be chosen
arbitrarily except for the condition (12). If one takes a complete set

of independent ip’s,, say, a complete set being one such that any
rp can be expressed linearly in terms of its members, then the values
of oLipy, for the members of this set ip^ may be chosen quite arbitrarily,

and the value oi ocip when ip is not a member of the set is then deter-

mined by (12), so that a is determined. Again, instead of specifying
the ai/fy’s, one could define a by specifying the numbers oap^, which
are quite arbitrary when the (p^s as well as the i/f^’s form a complete
independent set. The fact that a is uniquely determined in this way
follows from (10).

Now let (X be any observable and consider the equation

=
(17 )

where and ip^ are any two ip’s and <p^ and (p^ are their conjugate
imaginaries. We can consider this equation as defining a new ob-
servable since we can assume (17) holds for a complete set of

independent j/f^’s and for a complete set of independent ipj^s, and
since, as is easily verified, if (17) holds for two values of ip^ it must
hold also for any linear combination of them, and similarly for i/f^.

In fact if (17) holds for ipj, — ip^ and for ip^ = ip2 we have the equations

CpsOClp^ = <PsOc4f2 =
from which we can deduce

= Ci(pjj3lp^-\-C2^2^^h

which shows that (17) holds also for ip^, = c^xp^-\-c.^ip,j,.

The observable ^ defined by (17) is called the conjugate complex
of the observable a and is written a. Thus

(18 )

The conjugate complex of a is a. We use the words ‘conjugate com-
plex’ and not ‘conjugate imaginary’ since it is permissible to add
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together an observable and its conjugate complex, both being
quantities of the same nature, so that one can split up any observable
a into its real part, i(a+a), and pure imaginary part, — a). The
condition for an observable a to be real is

“’As

In the special case when the observable a is a number, its conjug^

complex defined by (18) is the ordinary conjugate complex number.
It will now be proved that if ijj^ and are conjugate imaginary

symbols, then so also are and <f>^6cfor any observable a. If we denote
by ^ the conjugate imaginary of then from (8)

^^s = ^s“’Ai

for arbitrary xjj^. But from the definition (18)

^s^^Ai = ‘Ai“’As*

Hence ~
for arbitrary so that from (10) (with 0’s and 0’s interchanged)

0 = 0i“, (20)
which was to be proved.

We shall now find the conjugate complex of the product
two observables oi^ and ag- equation that defines this conjugate

complex, is —
9p “i “2 0a = 9q “i “2 0p (21

)

for arbitrary 0^, and 0^. If in formula (8) we x^ut

‘As
= <Aa“n 0r = “2’Ap»

which require, from the theorem of equation (20),

0s “i 0a’ 0»’ 03? “2’

we get 0^ ^2 0g = 0^ (x^ oL^ 0^.

Comx)aring this with (21) we obtain, since these equations hold for

arbitrary 0^ and 0^^, the result

(22 )

Thus to find the conjugate corngflex of a 2>‘^oduct we must take the con-

jugate complex of each factor and reverse their order. This rule holds

also when there are more than two factors in the x>roduct, as may be

proved by successive ax)j)llcations of the rule for two factors, e.g.

As a corollary of this theorem we have that if and cxa are two

real observables, then cx^a2 +a:2 cei is also real and a^oL^,—

a

2 “i pure
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imaginary. Only when ocj^ and oc^ commute is oi^oc2 real. Equa-
tion (18) and the theorem of equation (20) show that it is a general
rule that when one forms the conjugate imaginary or the conjugate
complex of any permissible combination of the symbols denoting
observables and states, one must reverse the order of the factors in
a product and take the conjugate imaginary or conjugate complex
of each factor.

§ I*hysical Interpretation of Algebra of Observables
The axioms and assumptions that we have made about observables
are so far purely mathematical and have no physical implications.
The physical connexions, which cause these axioms and assumptions
to become physical laws, will now be given. The observables that
appear in the discussion in this section must be understood to be all

real observables.

If a state and an observable & are such that, when an observa-
tion is made of the observable with the system in this state the
result is certain to be the number a, we assume this information
can be expressed by the equation

(23)
Conversely, when an equation of this type is given we assume it has
the physical meaning that a measurement of the observable ot with
the system in state will certainly give for result the number a or
that the observable a has the value a for the state ifj,., to use a classical
way of speaking which is permissible in this case. Equation (23) is

equivalent to a , .
cp^0i = acf>^ (24)

provided a is real, since, from the theorem of equation (20), equation
(24) is just the conjugate imaginary of equation (23). Thus the
symmetry between the ^’s and is maintained.

In the special case when the observable a is a number, then equa-
tion (23) holds for every state with this same numbex* for a. This
means that the observable is of a trivial kind such that any measui'e-
ment of it always gives one particular result, independent of the state
of the system.

We can now deduce some physical results from the theory. Eor
example, if for a given state ifr the observable has the value and
the observable ag has the value a^, we have the equations

= a 01.2 ip = ^2 ’Aj (25)
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from which we can deduce that

^1*^2

and thus infer that for the state ip the observable ol^-{-(x^ has the

value a-^-\-a2,

and the observable has the value a^. These results

are necessary for the theory to be consistent, since the observations

of Oil and ag for the system in state ^ are compatible, as neither

observation need cause a change in the state, so that one would

expect the ordinary classical ideas of measurement to be valid. For

the same reason we require the result, which may easily be deduced

from the first of equations (25) by induction, that/(Q:i) has the value

/(ttj) for the state i/f, where / denotes any function expressible as a

power series. We shall later define more general functions of an

observable than are expressible as power series, and for these more

general functions this result will still hold. In fact it will form the

basis of the definition of these more general functions.

Again, if we are given that an observable a has the value a for

each of two states and we can write down the equations

0Ctp2 =
from which we can deduce that

021/^2)-

Thus a has the value a also for any state obtainable by superposition

of i/f^ and i/f2 . This result was deduced in § 6 from the definition of

sui^erposition and the fact that it is also deducible from the i)resent

analysis illustrates the self-consistency of the theory.

In classical mechanics an observable always has a particular value

for any state. This is not so in quantum mechanics, where a special

condition of the type (23) is necessary for an observable to have a

particular value for a certain state. In general the measurement of

an observable for a given state will lead to one or other of a number

of possible results, according to a certain probability law. The ques-

tion now to be considered is what can be said in the general case

about an observable with respect to a state. If one has an observable

oc and one takes any two states one can form the number

cprOiips. This is the only general way of forming numbers referring to

an observable and particular states. Thus an observable has a

numerical value associated with each pair of states, in sharp dis-

tinction to the classical theory, where an observable always has a
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numerical value associated, with, a single state, namely, the value of

the observable for that state.

We could, however, as a special case, take conjugate imaginary

symbols and which both denote the same state, and form the

number We should then have a number completely deter-

mined by the observable a and the state ip^., provided the cp^ and ipj,

are normahzed, since, as is easily verified, (p^octp^ remains invariant

under any transformation of the type (
4 )

with tha.t pre-

serves the normalization. Thus it is possible to associate with the

observable a a definite numerical value for a single state but it

would not be convenient to define this number as the value of the

observable oc for the state tp^, for the following reason. If for a par-

ticular state % is the value of an observable cx^ and ag “2=

then we should require to be the value of aid" “2 ^^d to

be that of a^ag. The definition just proposed for the value of an

observable for a state would give

from which we could deduce

«l+«2 =
and hence infer that a^-\-a2 is the value of odj^-f-ag- We could not,

however, deduce that
Ct^ odjOdg

which would, in fact, in general be untrue, so that we could not infei

that ^1^2 is the value of a^ag- Thus we cannot take <56,. ociji^ as a general

definition of the value of an observable a for a state xp^.. We must

fall back on the equation (23 )
to give the definition of this value in

the special cases when it exists.

The fact, however, that the proof fails only in the case of the

product a^ag and not in the case of the sum od^L-i-oig allows us to say

that <pj. oopj. is the average value of the observable ol for the state

This is so because the average of the sum of two quantities must

equal the sum of their averages, but the average of their j^roduct

need not equal the product of their averages. Thus our symbolic

algebra allows us to define a certain number as being the average

value of an observable for a particular state, without leading us to

inconsistencies. The assumption that this so-defined average is really

what one would obtain if one measured the observable a large number
of times (the system having to be re-prepared each time, of course,
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in order that it may be in the proper state) and worked out the

average result, constitutes the main link connecting the symbolic

algebra with physical facts. The other links previously given, i.e. the

assumption that \(lir^s\^ is probability of agreement of with

tps ^nd the assumption that the equation cxijj = aifj holds when an

observation of ol on the system in state ifj will certainly lead to the

result a, will be shown later (§ 18) to be deducible from this main

link as special cases.

If an observable oc has the value a for a state ifj^, so that equation

(23) holds, we can deduce that

oLtpj. =
<f>j.

aijj^ = a<f>^ — a

if and ipj. are normalized. Hence the average value of oi for the

state xpj. is found to be a, as is necessary for the physical interx)reta-

tion of the theory to be consistent. We cannot, of course, deduce

the converse, i.e. deduce (23) from the equation
<f>^

onp^ = a.

The numbers which the theory also gives us, where and
i/jg denote two different states, do not have any such direct iihysical

interpretation as the numbers p^ocip.,.. We shall hnd later that

is, apart from a certain factor, the ]n‘obal)ility of a transition from

state ipg to state cp^ l)eing caused by a ])erturbing energy whose time

integral is a. (See § 52.)

§ 12. Example of Algebra of Observables
As an exami)le of the symlxjlic algebra of observiiblciS, whicli is the

same as ordinary algebra except for the non-validity of tlie com-
mutative law of multix>lication, we shall consider some x>i’O|)erti0S of

two observables, p and q, that satisfy

qp—2^q=-i, (26)

i being a root of minus one. From § 10 we see that it is [possible for

two real observables /> and q to satisfy this relation. If we multix)ly

(26) by q on the left, and tlien by q on tlie riglit, we obtain

and m—'Pef = iq,

from which, by addition, we find

q^p—pq^ — 2iq.

This result can be generalized. If wo multqjly (26) firstly by on
the left, secondly by on the left and q on the right, thirdly by

.S595 -rn
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qn~‘i
g
2

rigjit, and so on until T^-thly we multiply

simply by q^~'^ on the right, we get the equations

qfi-'^jpq—q^-^pq^ =
qn-'ipq2—qn-^^qi — iq^-'^

qpq^-^—pq^ =
which give, on addition, the result

qf^p—pq^ = niq^~'^.

This result may be written

q^p—pq^ = idq^jdq.

It follows that, if f{q) is any function of q expressible as a power

fp-Tf=idfldq, (
27

)

since this result must hold separately for each term in the expansion.

As a special case, we may take for / the power series

CO

w = 0

where c is a number. We can define this to be and tlu^ ordinary

exponential theorem will then hold, since no syinl)ol that does not

commute with q could occur in the proof of it to make a difference

between the present and ordinary algebra. With this expression for

f, (27) becomes
^

^ ecq^-pe'^cq=^

e^oQp = {p—c)e'^c(i.or
(
28

)
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EIGENVALUES AND EIGENSTATES

§13. Definitions and Elementary Properties

In the present chapter we shall consider some of the properties of

real observables. If we have any real observable a we can write down
the equation o4 = (1 )

where a is a number, and consider it as an equation for the two
unknowns a and 0. If a and ifj are any solution, we call them
respectively an eigenvalue and an eigen-ip of the observable a. It may
easily be seen that the eigenvalues are all real numbers, since if we
multiply (1) by the ^-symbol that is conjugate imaginary to ip, we

= a4i,.

Now palp and pp are both real, as follows from equations (19) and

(8) of the preceding chapter when one takes r == s, and hence a must
be real. Analogous to (1) is the equation

pa (ip. (2)

If a and p are any solution of (1), then the same value of a and the

p that is conjugate imaginary to this ip form a solution of (2), since

equation (2) is then the conjugate imaginary of equation (1). We call

the p’s that solve (2) eigen-p’s, and the states denoted by the eigen-j/r’s

or eigen-p’s we call eigenstMes of the observable a. Each eigen-i/f,

elgen-p or eigenstate is associated with one definite eigenvalue, or,

as we shall say, belongs to that eigenvalue.

The physical meaning of an eigenvalue is that there exists a state,

namely, the eigenstate belonging to it, such that a measurement of

the observable when the system is in this state will certainly give for

result just this eigenvalue. The eigenvalues of an observable are the

possible results of a measurement of this observable. Every possible

result of the measurement of a must be an eigenvalue as it must
satisfy (1) when one takes for the p in this equation the state of the

system immediately after the observation has been made. The whole

set of eigenvalues of an observable may consist of a discrete set of

numbers, or a continuous range of numbers, or perhaps both. The
calculation of eigenvalues is one of the main problems of quantum
mechanics.
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In the special case when the observable is a number, it has only

one eigenvalue, namely, itself, and any state is an eigenstate. If oc is

any observable and c is a number, then, as follows at once from the

definitions, each eigenvalue of <x-\-c is greater by c than an eigenvalue

of (X and each eigenstate of a+c is eigenstate of oc. Similarly each

eigenvalue of ca. is c times an eigenvalue of ot and each eigenstate of

coi is an eigenstate of a.

The theorem will now be proved that two eigenstates belonging to

two different eigenvalues of an observable are orthogonal. Suppose the

eigenstate belongs to the eigenvalue a^ and the eigenstate i/f2

belongs to the eigenvalue a^- We then have the equations

afjy = ayxpy (
3 )

Multiplying (3) by <j>^ on the left-hand side and (4) by i/q on the

right-hand side, we obtain

and ~ ^2‘/’2 ’Ai-

Hence (%

—

af)4> 2^y= 0
,

so that, if ay is not equal to a^,, then </>2 0i = b and the two states

xjjy and 02 orthogonal. This theorem is required l)y the [physical

meaning of eigenstates, since for two eigenstates l)olonging to two

different eigenvalues there exists an observation, namely, the

measurement of the observable a, for which the residt must certainly

be different in the two cases, so that the two states are, by definition,

orthogonal.

If 01 and 02 are two eigen-0’s belonging to the same eigenvalue,

then it is evident that any linear combination of them (Ci0| 1-C2 02)

must also be an eigen-0 belonging to this eigenvalue. It will now be

proved that no linear combination of eigen-0’s belonging to differcuit

eigenvalues can be an eigen-0, i.e. that eigen-ip’s belonging to different

eigenvalues are all necessarily independent. If this were not so we
should have a relation of the type

c^0^ = 0, (5)

with numerical coefficients c^, between a number of oigen-0’s belong-

ing to different eigenvalues. We can without loss of generality

assume that there is no other independent relation of this type
between these eigen-0’s, since if there were others we could eliminate
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some of the which would leave a single relation of this type

between the remainder. Multiplying (5) by oc, we find

0 = a X,. (^)

if is the eigenvalue belonging to iJj^. Now (6) is a linear relation

between the i/f^’s with numerical coefficients and therefore, by hypo-
thesis, must not be independent of (5), This requires that the u^’s shall

all be equal, so that the i/r^’s must all belong to the same eigenvalue.

This theorem could have been inferred, from the definition of super-

position in § 6 together with the physical meaning of eigenstates.

A relation of the type (5) implies that one of the eigenstates, say,

is obtainable by superposition of the others j/fg, . .
. ,

so that any
result that can be obtained from an observation of the system in

state i/fj must have a finite probability of being the result when the

observation is made on the system in at least one of the states

ifj^ ... . This would not be the case if the observation consisted in the

measurement of the observable a when the j/f^’s all belong to different

eigenvalues of a. Thus a relation of the type (5) is impossible.

§14. The Expansion Theorem
The expansion theorem of the theory of eigenvalues asserts that an
arbitrary ip-symbol can be expanded in terms of eigen-ip\‘^ of any real

observable, thus i ^ t e7 \

^ (
7

)

where the j/z^/s are eigen-?/f’s of a real observable oc. Such an expansion

must be unique, since otherwise there would be a relation of the

type (5) between eigen-i/f’s belonging to different eigenvalues. If the

eigenvalues of oc do not form a discrete set of numbers but a con-

tinuous range, or if they form both a continuous range and a discrete

set, then the number of eigen-j/r’s occurring in (7) may be more than
an enumerable number and equal to the number of points on a line.

In such a case we may require an integral of the tyj)©

-A = J </v
dp (8)

in order to express the general if, or we may require both a sum and
an integral. The theory of «/f-symbols develo]^)ed in the pi-evious

chapter does not give any rigorous definition for <in integral of the

type (S). In order to get such a definition one would have to intro-

duce a number of new assumptions concerning limits and continuity

for the i/f-symbols, which would be beyond the scoj)e of the present

work. For all physical purposes it is sufficient for one not to aim at
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a rigorous theory when dealing with such things, but to content one-
self with making use of rough intuitive notions about limits and
continuity, such as could be obtained, for instance, from the vector
picture of the ?/f’s. These intuitive notions show that if one has a
^-symbol that involves a parameter p in some reasonably con-

tinuous way, one can differentiate or integrate with respect to p
and the result will be another j/f-symbol.

Under these circumstances one cannot, of course, attempt to give

a rigorous deduction of the expansion theorem from the symbolic
algebra. The following argument, however, makes the theorem
appear plausible. Consider the j/f-symbol that is a function of the

parameter r and that satisfies the differential equation

— ip^=:iaip^. (9 )

If ip^ is given for one value of t, then this equation fixes tp^ for a
slightly greater value of t. Thus we should expect this equation to

have one solution, and only one, for any given initial value for i/r^,

i.e. for xp^ equal to an arbitrary ip^ when -r = 0. Suppose now that
this solution can be expressed as a Fourier series or inteigral in r,

thus, if we take for definiteness the case of the integral,

= J dp, (10 )

where xp^ is independent of t, but involves the new' p.

Substituting this expression for xp^ in (9), we obtain

J ipe'^^'^xp^ dp = ia J dp
OT

J pe^P-^xP^ dp = ^ e-^'i^-^oixp.^, dp.

Since this equation holds for all values of r we can. equate coefficients

of which gives , ,

Thus xp^is an eigen-xp of a belonging to the eigenvalue p. If wo now
put T = 0 in (10), we obtain

^0 = 5 ^'P

which expresses the arbitrary xp^ in terms of the eigen -j//’s in tlie

form (8). The discrete terms such as occur in (7) would arise wlicn
the Fourier expansion (10) requires terms of a Fourier series.

The weak point in the above argument is the assumption of the
possibility of a Fourier expansion (10) for xp^. If one takes tlie vector
picture and considers xp^ to be a vector varying continuously with r,
one would expect some kind of Fourier expansion to be possible.
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except when the magnitude of the vector tends to infinity as t co

,

a possibility that may very well occur with an equation of motion
of the type (9). One can, however, exclude this possibility by making
use of the fact that a is a real observable. (For an observable that

is not real the expansion theorem is not necessarily true.) If (j>^ is

the ^-symbol that is conjugate imaginary to it will satisfy the

conjugate imaginary difierential equation to (9), which is

Hence £_
T^T ?)_ T1dr

cf>^ ioufj.

Bt

-i<j>^(xip^ = 0. ( 11 )

Thus the square of the modulus of the vector which is

remains constant.

From the above non-rigorous discussion one would expect the

expansion theorem to follow rigorously from the symbolic algebra

with the addition of suitable axioms about limits and continuity.

The corresponding theorem for must then, of course, also hold.

Throughout the rest of this chapter we shall, for definiteness, assume
the expansions we have to deal with involve sums and not integrals.

The theorems to be proved would still bc! true for integrals, only

formal alterations in the proofs l)cing recpiired. dlieso formal altera-

tions would, however, require a new notation, and this will bo given

in the next chapter (see § 22).

§ 15. Functions of an Observable
'Ihe expansion theorem enables one to give a definition of a function

of a real observable of the same degree of generality as that of an
ordinary function of a real variable. Let oc be a real observable and
let i/r„ be one of its eigen-i/f’s, belonging to the eigenvalue so that

It is evident, as was mentioned in § 11, tha.t if f{x) denotes any
function of x expressible a.s a power series, then

/(%)'A>- ( 12)

We can assume that this relation holds for more general functions.

If f{x) denotes any function of the real variable x whoso domain
includes the point x = = then the right-hand side of (12) has a
meaning and we can defines by this right-hand side. If there
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are several eigen-?/f’s belonging to the same eigenvalue say 0'^,

i/fp . .
. , so that there can exist linear relations between them of the

2 = 0 ,

where the coefficients c' are numbers, then the definition (12) is self-

consistent, since it gives

/(a) 2 c'vii = 2 c'f(aW^ = 2 c'f{a„W„ = 0.

Thus if the domain of the function /(a;) includes all the eigenvalues

of OL, we can give a meaning to /(a) multiplied into any eigen-«/f of ol.

Further, we can give a meaning to /(a) multiplied into an arbitrary

i/r, since we can expand this arbitrary i/f in terms of eigen-?//’s and
multiply /(a) into each term of the expansion separately.

Thus one can give a meaning to f{(x) when f{x) is any function of the

real variable cr, even an irregular or discontinuous one, whose domain
includes all the eigenvalues of a. If this domain contains other points

besides the eigenvalues of ol, then the values of f{x) for these other

points will not affect /(a). These results are a necessary consequence

of the physical meaning of eigenvalues. If ol is an observable quantity ,

then /(a) must also be observable when f{x) is any function of the

real variable x that has a meaning for all values of x that are j)ossil)le

results of the observation of a, i.e. all eigenvalues of ol, since the same
apparatus and experiment that measure a really also measure /(cx).

It follows from (12) that every eigen-j/f of ol is an eigon-i/j of /(a).

The converse, that every eigen-?/r of /(a) is an eigen-i/f of ol, is not

true, except when a is a function (a single-valued function is of coui-.se

understood) of /(a). Also it follows that the eigenvalues of /(ex) are

just this function / of the eigenvalues of cx, e.g. the eigenvalues of (x“

are the squares of those of ol. These results are obviously necessary

for the physical meanings of eigenvalues and eigenstates to be tcui-

able. Again, it may easily be deduced from the definition (12) tliat

the sum or product of two functions of an observable is a function

of that observable and that a function of a function of an ohstM-val)le

is a function of that observable, which results are also jdiysically

necessary.

We can use the eigen-fs, instead of the eigen-j/f’s in order to deline

/(cx). We then have jl r/ \ xj-

where is any eigen-^ of cx. This equation is, according to § 10, just

the conjugate imaginary equation to (12) and is thus deducible from
(12). The two definitions of /(cx) are therefore equivalent.
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Again

Hence
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The theorem will now be proved that any observable that commutes
with OL commutes also with /(a). This theorem is of course obvious
when/ is expressible as a power series. Let ^ be any observable that
commutes with a, i.e. that satisfies = ol^. Let be an eigen-i/f

of O' belonging to the eigenvalue a^ and let be an eigen-9S belonging
to the eigenvalue a^, which may or may not equal a^, so that

4^q OL = a^

c^q^OLiP^ =
<l>^ ^OLljj^ = OL^lfj^ == cf>^

(<^p ^q)^Q fij

SO that either = 0, or a^ = a^, which would give f{a^) ^f{a^).
Thus in either case r^/ % x-,»

==f(^p)<f^a^^'P
and again 4J(ol)^^^ = f{a^)cf>^

Hence
<l>^

[^/(a)—/(od)^]i/r^ = [/(<^p) —S{%)'\<f>Q P^p == 0-

This result is true for any eigen-^, ip^, and is hence also true for an
arbitrary ip, which can be expanded in terms of eigen-i/r’s. Similarly
it is true for any eigen-^, and is hence also true for an arbitrary
(p, which can be expanded in terms of eigen-^’s. Hence

/5/(a)—/(«)^ == 0,

which is the result required. In this proof it is not assumed that ^ is

a real observable, although, of course, it is understood that a is real
in order that a general function of a may have a meaning.

J he converse theorem will now be proved, namely, if every observ-
able that commutes with a real observable cl also commutes with another
observable /, then / is a function of ol. It will first be shown that if

is any eigen-?// of oc, then it is also an eigen-?/r of /. We introduce an
observable ^ satisfying the following conditions

:

- - lb

whenever ip^^ is an eigen-?// of oc belonging to a,n eigenvalue a^ that
differs from that of ?//.^„ which is a.^,

;

*Ap

and ^0; 0,

whenever ?//,', is one of a set of eigen-?/;’s of oc belonging to the eigen-
value a.j^, such that this set, together with ?/fj,, form a complete

GS5»5
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independent set of all eigen-«/f’s belonging to the eigenvalue We
shall then have that the and form a complete set of

independent i/f’s, so that jS is completely defined by these equations.

It is now easily verified that

= 0 =
oc^lp^ = Cl^P^ =
oc^lp'^ = 0 = ^OLlp'^.

Thus

for arbitrary p and ^ commutes with a. Hence, by hypothesis, ^ also

commutes with /, so that

Now for an arbitrary i/f-symbol p one must have

= cpj^,

where c is a number, as one can easily see by expanding p in teinis

of p.p, the p'jp’s and ?/r^’s, and multiplying ^ into each term separately.

Hence

so that fpp ~
and p^ is an eigexi-p of /. To complete the luoof that / is a function

of oL according to the above definition, it remains to be shown only

that if two or more eigen-i/f’s belong to the same eigenvalue of a, then

they also belong to the same eigenvalue oif. Ihe functional relation

between the eigenvalues of f and those of a will then specify the

function that / is of a. Now if two or more eigen-i/<’s of a belong to

the same eigenvalue of ol, then any linear combination of them will

be an eigen-p of a. From what has already been proved it follows

that this linear combination must also be an eigen-?// of/, which can

be the case only if the eigen-?/f*s, that it is a linear combination of,

all belong to the same eigenvalue of /.

I 16. Examples of Functions of Observables

Some examples of elementary functions of a real observal)le oc will

now be considered. The reciprocal a.-^ always exists when od has not

the eigenvalue zero. By definition it satisfies

Od ^p2) Pp^

where p^ is an eigen-p of a belonging to the eigenvalue a.^,. Hence

(XCX~^pp = oedp^ pp — Pp
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and since this is true for all xJj^ we must have = 1. Similarl;^?

oc-^oc = 1. Either of these equations is sufficient to determine
completely when this reciprocal exists according to the above defini-

tion. To prove this result, suppose there are two solutions, and
(od~^) 2 , of = 1 ; so that

= 1 Q;(oii“^)2 = 1.

This gives = 0, (13 )

where ^ = (a-i)i— (a-i)
2 .

If oc is such that there exists a not identically zero, satisfying (13),

then a can have no reciprocal, according to the above definition,

since if such a reciprocal exists we obtain, by multiplying (13)

on the left-hand side by

0 = oc^a^ =
Hence ^ = 0 and our two solutions of a:a“^ = 1 are identical.

As a second example we shall take the square root of a.. This is

defined by , , , ,

p ''P TP' (14 )

The square root of a. always exists, but is a real observable only
provided a has no negative eigenvalues. From (14) one obtains

VodVai/fp == ^h;pv^pl/fp = oap^,

so that VaVa = oc.
(15 )

On account of the ambiguity of sign in (14), the square root of an
observable is to a certain extent indeterminate. In order to determine
a square root completely one must choose a particular sign for each
eigenvalue to insert in (14), which is the same as fixing the sign

of the square root of a real variable whose domain consists of the
eigenvalues a^. One can choose the sign to vary as irregularly as one
likes in passing from one eigenvalue to the next, and equation (14)

will always define an observable Vex satisfying (15) that can legiti-

mately be called a square root of a. If the observable oc has two
eigen-i/f’s belonging to one and the same eigenvalue a^, then we could

define an observable Va by equation (14) with the + sign for one
of these eigen-i/f’s and the — sign for the other, and with arbitrary

signs for the eigen-i/r’s belonging to eigenvalues other than a^j. This
observable would still satisfy (15), but it would not be a function of

the observable oc in accordance with our definition, which requires

a unique coefficient on the right-hand side of (14) for each eigenvalue

ap, so that this coefficient will form a single-valued function of the
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real variable a^. The Va defined without this unique coefficient

would not, for instance, satisfy the. condition of commuting with any
observable that commutes with a. Thus, unhke what we had in the

case of the reciprocal, equation (15) is not sufficient for the definition

of square-root functions, but must be supplemented by the condition

that the observable that is being defined is actually a function of a.

The number of different square-root functions is 2^ where n is the

number of different eigenvalues of a. The most useful one is usually

that, which exists only when all the eigenvalues of a are positive, for

which the positive sign is taken in every case.

As an example of a non-analytical function we may take the

modulus |cx| of the observable a. This is defined by

and is quite a proper observable, in spite of the fact that the corre-

sponding function of a real variable is discontinuous, and may be

used freely in the analysis when desired.

§ 17. Simultaneous Eigenstates
A state rp may be simultaneously an eigenstate of two observables

a and j8, i.e. it may satisfy both
CXj/f = CJi/f

and = hip,

where a and b are numbers. We should then have

a^ifj = abip =
or (ajS

—

Pcx)zp — 0.

This suggests that the chances for the existence of a simultaneous

eigenstate of two observables a and ^ are most favourable when
ocB— /3a = 0, i.e. when a and ^ commute. When a and /3 do not com-
mute the possibility for the existence of a simultaneous eigenstate is

not absolutely ruled out, but the occurrence of such a state is excep-
tional. On the other hand, when a and /3 commute there exist so

many simultaneous eigenstates, that, as will now be proved, cm
arbitrary state can be exjganded in terms of them. We thus get a
generalization of the expansion theorem of § 14.

Let a and ^ f^wo observables that commute and let be an
eigen-?/f of a belonging to the eigenvalue a. By the expansion theorem
of §. 14 we can expand ifj^ in terms of eigen-i/f’s of j8, thus

*Aa
~ ^6 ’Aft’ (16)
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where is an eigen-^ of j3 belonging to the eigenvalue b. It will

now be proved that each ?/r^ in this expansion is an eigen-i// also of
od and is thus a simultaneous eigen-^ of a and /3. If /(y3) is any func-
tion of the observable yS, we have

— CX 'Eif,f(b)lfS(^

from the definition of a function given in § 15. hTow from a theorem
of § 15, since a commutes with ^ it must also commute with f{^),

= aM) Zt,<P^ = a X^f(b)4,^.

Hence a = a (17)

Now f{b) is an arbitrary function of the real variable b, so that for
each value of b in the domain of b,f(b) is an arbitrary number. Hence
we can equate coefficients of /(6) in (17), which gives

oaffj, = aijjf,.

Thus each of the i/r^’s in the expansion (16) is an eigen -i/r of oc belonging
to the same eigenvalue a as that of our original and is thus a.

simultaneous eigen-i/r of a and y8. Any eigen-j/r of oc can therefore
be expanded in terms of these simultaneous eigen-i/f’s. But an arbi-
trary ifj can be expanded in terms of j/r^’s, and hence an arbitrary
ifj can be expanded in terms of simultaneous eigen-^’s.

The converse theorem is also easily proved, namely, if two observ-
ables oc and ^ are such that an arbitrary ifj can be expanded in terms of
the simultaneous eigen-ifj^s of oc and yS, then oc and jS commute. We have,
in fact, if is a simultaneous eigen-?/» of a and yS belonging to the
eigenvalues a and b respectively, the equation

{oL^—^oc)ifj^^ = {ab—ba)xf^^ = 0 .

Hence {oi^—/3oc)ip = 0,

where ijj is any ?/f-symbol that can be expanded in terms of the
If this is true for an arl)itrary i/j, we can infer that

oc^— /3oc “ 0,
as required.

1 he idea of simultaneous eigen-?^’s may ol)viously l)c exteiide<l to
more than two observables and the theorem just provt^d still holds.
i.e. an arbitrary ifj can be expanded in terms of tht^ simultaneous
eigen-«/f’s of any set of observal)les that commute, and also its con-
verse. The same {irguments uscal for tlu^ i)roof in the case of two
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observablos are ad.e(^nate for the general case, if we have three

observables oc, jS, y that commute, each with the othei two, we can

expand, any simultaneous eigen-?// of oc and ^ in terms of eigen-i/f s of

y and then show that each of these eigen-?/f’s of y is also an eigen-?//

of a and ^3.

The fact that there is an expansion theorem for two or more

observables that commute, the same as that for a single observable,

means that a set of two or more observables that commute has manj'

of the properties of a single observable and can for many purposes

be counted as a single observable, the result of a measurement of

which is expressible by two or more numbers. Thus the theoiy of

functiosLS of a single observable developed in § 15 can be applied

without change to functions of two or more observables that com-

mute. If a, yS, y, . . . are a set of observables that commute, we define

a general function of them, f{oc^y ...), by

/(od ^ y . . •)'Pahc .. .
~ be.. ~)^abc. . . ’

where ^pahe... ^ simultaneous eigen-?// of oc, ^,y, ... belonging to the

eigenvalues a, b, c, ... respectively, and /(g, b, c
,

. . .) is a function of

the real variables a,b,c, ... whose domains consist of the eigenvalues

of a, y, . . . respectively. The theorems given in § 15 about func-

tions of single observables will apply also to functions of sets of

observables that commute, the proofs being formally equivalent in

the two cases. Tor example, we shall have the theorem that any

observable that commutes with each of a set of commuting obseiv-

ables a, jS, y, ... will commute also with any function of them,

/(od^y...).

If we take the maximum possible number of independent observ-

ables that commute, the condition of independence being that no one

of them can be expressed as a function of the others, then there can-

not be more than one simultaneous eigenstate for them all belonging

to a specified set of eigenvalues. To prove this result, let od,,. lie the

set of commuting observables and suppose there are two inde])endent

simultaneous eigen-?//’s, if/j^ and belonging to the same

set of eigenvalues. Introduce the new observable p defined liy

whenever ip^, is a simultaneous eigen-?// belonging to a different set of

eigenvalues. Then this ^ commutes with all the a’s and also it is not

a function of them, as may be seen from the fact that any linear
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combination of and ^2 ^ simultaneous eigen-^ of all the a’s but
is not an eigen-^ of so that the set of as does not contain the

maximum possible number of independent commuting observables.

Hence, when the set of a’s does satisfy the given conditions, each

eigenstate must be uniquely determined by the eigenvalues to which
it belongs. Such a set we call a complete set of commuting observables.

§18. Some Probability Theorems
We shall now determine the probability of a given result being obtained

when an observation is made on the system in a given state. For this

purpose the only physical assumption we shall make use of is that

given in § 11 for the average value of an observable. To determine
the probability that an observable shall be found to have the value

a when a measurement of it is made for the system in a state ifj, we
use the fact that if a measurement is made of /(a), any function of

a, the average result obtained will be

where <j> is the conjugate imaginary of ip, provided <p and are

normalized. Suppose ^ and ip to be expanded in terms of eigen-(/>’s

and eigen-iA’s, thus
4> = Xa<Pc. = (18)

where belongs to the eigenvalue a and to a'. The expression

for the average of /(a) now becomes

4^o.'
— ^aa' Si^)4*a^l^a'

= Xaf{a)P,Pa, (19)

when we use the theorem of § 13 that eigenstates belonging to dif-

ferent eigenvalues are orthogonal. Now if P{a) is the probability of

the observable a being found to have the value a, the average value

of/( ol) must be 2.(^^jf(U')jP(u), since the oi'dinary probability rules will

ap23ly in this case. Equating this expression to (19), we find

XJ\a)P{a) = X,JXa)P^p,.

This holds when f{a) is an arbitrary function of the real variable a,

so that we must be able to equate coefficients of /(a), which gives

P{CI) = P,rP^. (20)

We can easily verify that this expression for P{a) gives unity for the

total probability of ol having any value, since from the normalizing

condition for p and p we find

4*a ^a' ‘/'a
= 1 ’
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which, reduces to

4^a4^a

We can put the expression (20) in a different form by inserting

numerical coefficients in the expansions (18) so that they read

4* ~ ^a4^a’ ^a' ^a'

and taking the ^„’s and ij/^s to he normalized. We then get for P{a)

P{a) = C^4>a^a4^a =
so that the probability of a. having any given value is equal to the

square of the modulus of the corresponding coefficient in the ex-

pansion.

From this it follows at once that if the state rp is an eigenstate

belonging to the eigenvalue a, the probability of a having the value

a is unity. Thus the result that if = aip, a certainly has the value a

for the state i/r, is deducible from the general assumption for the

average value of an observable. A second immediate consequence is

that any result, a say, for an observation of ol on the system in the

state Ci«Ai+C2 02 ^^8 a finite probability of being the result when this

observation is made for either state or state since if the term

belonging to the eigenvalue a in the expansion of Cji/fi+Ca 02 in eigen-

0’s of OL does not vanish, that in the expansion either of 0^ or of 02

must also not vanish. This shows that the definition of superposition

given in § 6 is equivalent to that contained in the symbolic algebra,

together with the interpretation of this algebra that 0a0 is the

average of a.

The results we have just obtained all remain true when we rex)lace

the observable a by a set of two or more observables that commute,

the proofs being formally unaltered. Thus, we shall have that if 0 is

expanded in terms of simultaneous eigen-0’s of two observables, a

and 6, that commute, i.e. j, v ,hip — Afli, ipaln

where 0^^ is a simultaneous eigen-0 belonging to the eigenvalues a

and b for a and /3 respectively, then the probability that the results

a and b shall be obtained from measurements of a and ^ for the state

0 will be 4^ah4^ah when 0 is normahzed. The existence of a definite

probability for these results, independent of the order in which tlie

observations are made, requires that the observations shall not inter-

fere with each other and suggests that the condition that two observables

commute is equivalent to the condition that the two observations are com-

patible. A formal proof of this will now be given. Before we can do
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this we must obtain a mathematical form for the condition that an
observation is made with the minimum of disturbance, which we
have hitherto discussed only qualitatively.

Consider an observation, consisting of the measurement of an
observable a, to be made on a system in the state ip. The state of

the system after the observation must be an eigenstate of oc, since

the result of a measurement of ol for this state must be a certainty.

Now suppose the observation to be made in such a way that the

state of the system afterwards is always one of those that occur in

the expansion of the initial ^ in terms of eigen-i/f’s of a, i.e. one of

This is permissible since there is one eigen-i/r in the expansion for

every eigenvalue a that has a finite probability of being the result

of the observation. This observation of a may then conveniently be

defined to be the one that causes the minimum of disturbance to the

system. Observations that cause the minimum disturbance are thus

those with the property that, by a superposition of all the possible

states after the observation, the state before the observation may be

formed, or those with the property that any result that can be

obtained from any observation on the system in the initial state is

a possible result when the same observation is made on the system
in one of the final states. It is observations with this property that

should be understood in the discussion on compatibility in § 4.

Granting the existence of observations with this property, there is

a physical necessity for the expansion theorem of § 14.

Now let a and be two observables that commute and let any
state p be expanded in terms of simultaneous eigen-i/f’s of ol and
B, thus

,
,— ^ab Yab-

The expansion of p in terms of eigen-p’s of a must then be

(21 )

where (22)

and similarly the expansion of p in terms of eigen-j/j’s of /3 must be

p = Xf, Pi,, (23)

where pf,
= pat- (24)

The suffixes in each case denote the coi'i-esponding eigenvalues. If

p is normalized, then the j)robability for this state of tlie result b
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being obtained from a measurement of ^ will be When this

result is obtained, the state of the system after the observation will

be if the observation is made with the minimum of disturbance

according to the above definition. If an observation is now made of

oi for this final state j/tj,, the probability of the result a being obtained

will be, from (24), , r ij t

9ab Yah 19b 9b>

the denominator arising from the fact that the symbol ipi, is aiot

normalized. Thus the probability of first the result b being obtained

for ^ and then the result a for a will be, by multiplication, 4^ab^ab'

The total probabihty of the result a being obtained for the second

observation with any result for the first must therefore be

^b ^ab4‘ab'

If, now, an observation of a were made on the system in the initial

state ip, with no observation at all of the probability of the result

a being obtained would be, from (21), <j>a4^a-
account of (22), this

must equal / 'C' r v' j /^6 9ab ^b' Tab' — ^b 9ab 9ab’

from the orthogonality theorem of § 12, which is the same as the

probability that the result a shall be obtained for oc after an observa-

tion of j3. This is just the condition that q: and ^ shall be compatible

according to § 4.

The converse will now be proved, that if the measurements of two

observables a and jS are two compatible observations, then a and ^
commute. It was shown in § 4 that if the compatible observations

oc and are both made on the system in any state ifj, the final state

will be such that the result for either observation with this state will

be a certainty, i.e. the final state will be a simultaneous eigenstate

for cx and If the observations are made with the minimum of

disturbance according to the above definition, then the initial state

ip must be capable of being expanded in terms of all the possible final

states. Thus an arbitrary ip can be expanded in terms of simultaneous
eigen-j/f’s of a. and so that a and yS must commute.
The identification of the condition of commutability of observables

with that of the compatibihty of the observations allows us to see

a physical necessity for the theorem of § 15 that any observable that
commutes with an observable oc commutes also with /(a), any func-
tion of oc. This theorem may now be stated in the form that any
observation that is compatible with the observation of oc is com-
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patible also with the observation of /(a) and is thus physically

obvious, since any observation of oc is in the fact itself also an
observation of /(a).

It will now be shown that the fact that the probability of agree-

ment of two states and <^2 1^2 when and cj>2 are normalized,

is deducible from the general assumption for the average of an
observable. It has been shown that from this general assumption

one can deduce that the probability of an observable a having the

value a for the state is where c„ is the coefficient of the eigen-^

belonging to the eigenvalue a in the expansion of in terms of

eigen-^’s of a,
^25 )

when j/fj, and all the i/f^’s are normalized. This result is still true when
<x denotes a set of commuting observables and i/r^ is a simultaneous

eigen-i/f belonging to the set of eigenvalues a^. There is one maximum
observation, the result of which for the state j/fg is a certainty. This

maximum observation will consist in the measurement of a set of

commuting observables which set must be a complete set, in the

sense defined at the end of the preceding section, if the observation is

really a maximum one. The state i/fg is then a simultaneous eigen-i/f

of all these observables a,, and there is no other simultaneous eigen

belonging to the same set of eigenvalues as 1/^3 does. That term in

the expansion (
25

)
which belongs to the same set of eigenvalues as

j/fg must therefore be just if/2 itself or differ from it by a trivial

numerical factor. The probability of agreement of with i/jq, which
is the probability that the result of the observation of the ex’s for

state is the same as for state is therefore where is the

coefficient of that ift^, in (
25

)
that is just But from the orthogonality

theorem, one finds that is equal to just this coefficient so

that the probability of agreement is 1^2

§ 19. Contact Transformations
The following important theorem in the theory of eigenvalues will

now be j)roved. // JS is a7iy observable ha/ving a reciprocal ^ and cx is

any observable, them, the eigenvalues of are the sa^rie as those of a.

Let a be any eigenvalue of cx and let be an eigen -c/f of cx belonging

to it, so that

This gives SexS ^ ^ ^ ^

Hence is an eigen -?/f of belonging to the eigenvalue a.
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Conversely, as may be shown in a similar way, if a is any eigenvalue

of and ^ is an eigen -?/f of SocS-'^ belonging to it, then a is also

an eigenvalue of ol and is an eigen-i/r of a belonging to it.

It is not necessary for this theorem that aS should be a real observ-

able. If aS' is not real we cannot use the general definition of a function

of an observable in order to define aS'”^, but must use instead the

conditions = 1, which are sufficient for the proof of the

theorem. aS can be any observable such that there exists an 8-'^

satisfying these conditions. It is also not necessary for the theorem
to be true that ol should be a real observable, but since the only

eigenvalues of interest in quantum mechanics are those of real

observables, the theorem is useful only when both ol and SaLB~^ are

real. This imposes a condition on 8. If jSaS-'^ is to be real whenever
OL is real, we must have, from the rule (22) of § 10,

SolS-^ == aS^^ = '^5lS'= ^olS,

which requires, ignoring possible trivial numerical factors,

^-1 = -s, s =
Either of these conditions is a consequence of the other.

When S satisfies these conditions, the transformation from a set

of observables to the set = SoLj.S~'^ is called a contact transforma-
tion of observables, since, as we shall see later, it is analogous to a
contact transformation of classical mechanics. Each of the new
observables jS,. has the same eigenvalues as the corresponding original

one oLj.. Eurther, the transformation has other remarkable properties,

namely, if any algebraic relation holds between some of the ols, the same
relation holds between the corresponding and if one of the a’s is

a function of another one according to the general definition, the same
functional relation holds between the corresponding ^’s.

To prove the first of these two properties, we observe that any
algebraic relation between the a’s may be written in a rational
integral form of the type

S COL^ OLg . . . OL^= 0
,

the summation consisting of an arbitrary number of terms, each con-
sisting of an arbitrary number of factors, and the c’s being arbitrary
numerical coefficients. Erom this we deduce, by multiplying by S on
the left and on the right, the result

S CaS'cYj, OLg 0L^S~^ = 0
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X cSoc^S ^JScXgS ^ . jSoig, S ^ = 0

or X cjSyy I3g ... 0

which is the result required.

To prove the second of these properties, suppose oig =^f(oci), where

f(a) is a function of the real variable a defined for each of the eigen-

values of ai- Since these are also the eigenvalues of we can give

a meaning to Let be an eigen-i/r of belonging to the

eigenvalue a. We then have

fi°‘l)<l’a
= (26)

But Sip^ must be an eigen-ip of JSoi^S~^ or belonging to the eigen-

value a of so that we must also have

/(A)'5^<.= /(«)'»>/-»• (27)

Multiplying (26) by S on the left, we obtain

Sf(o^)S-^S4,., = Sfia)4.,

= /(A)-S^a (28 )

from (27). Now jSip^^ is an arbitrary eigen-i/f of so that any ip can

be expanded in terms of jSip^’s. Hence we can equate coefficients of

Sip^ in (28), which gives

/(/3i)
=

as required.

If two contact transformations are applied successively, the result

is another contact transformation. To see how this comes about,

consider the transformation from the a’s to the yS’s and
the transformation T-'^ from the ;8’s to the y ’s. We have then

y^ =
Now {T8){8~'^T-'^) -= 1

and {8-'^T-^){T8) -= 1,

so that we can ]uit 8~^T~^ = {T8y~^

.

The connexion between the a’s and y’s now becomes

y^ -- T8oc.,{T8)-^,

which is a contact transformation.

If the observable 8 in the transformation y8 = 8(x8~^ differs from
unity only by an infinitesimal, we get an infinitesimal contact trans-

formation. Suppose S = ly-iA,

where A is very small, so that its square may be neglected. (A small
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observable is one whose eigenvalues are all small, or whose average

for any state is small.) We then have

8-^=l-iA,

since this gives SS~'^ — S~'^S = 1 with neglect of A^. The trans-

formation equation now becomes

iS= (l+i^)a(l-i.4),

which gives j8— a = i{Aoc—(xA), (29)

with neglect of This is the standard form for an infinitesimal

contact transformation. In order that /3— « may be a real observable

when a is real, A must be a real observable.

As an example of contact transformation theory, we shall obtain

some more information about the observables p and ^ of § 12, satis-

fying equation (26) of that section. We apply the theorem that p has

the same eigenvalues as SpS-'^, taking for 8 the expression where

c is a real number, which makes 8-^ = 8. We now find

8p8~^ — = {p
— —P—

with the help of equation (28) of § 12. Thus p has the same eigen-

values a,s p—c, which are just c less than those of so that if a is

any eigenvalue of a— c must be another. This is true for arbitrary

c, so that p must have as eigenvalues all numbers from —oo to -[“CO-

Similarly it may be proved that q has as eigenvalues all numbers
from —cxD to ~\-co. These results are necessary consequences of the

single algebraic condition qp~pq — i.



IV

REPRESENTATIONS OF STATES AND OBSERVABLES

§ 20. General Properties

In the two preceding chapters we dealt with certain abstract symbols,

denoting states and observables, whose exact nature was not speci-

fied, but which were assumed to obey certain definite laws. In the

present chapter we shall consider representations of these abstract

symbols, i.e. sets of numbers having properties that correspond com-

pletely to those of the symbols they represent. When once one has

found such a representation and has understood the nature of the

correspondence, one can obtain all the properties of the abstract

symbols that one wants by dealing entirely with their representatives,

to which, since they are just sets of numbers, ordinary mathematical

methods apply. One cannot, of course, obtain in this way any rela-

tion between the abstract symbols that one could not obtain directly

from the algebra of the abstract symbols without the help of a repre-

sentation. One can, however, often obtain results much more easily

and conveniently with the help of a representation than without it,

and further the numbers occurring in a representation have often

a very direct physical interpretation, so that representations are of

great use in applications of the theory.

Suppose we have a complete set of inde2:)endent j/r’s, the general

member of the set being denoted by ijjjy The fact that the set is

complete means that every ip can be expressed as a sum of members
of the set in the form

Ip ap ipp,
(
1 )

where the coefficients are numbers. The fact that the members of

the set are independent requires that an expansion of the form (1)

is unique, since if an alternative expansion

were possible, we could obtain by sul)ti-action

0 - - ^p[fip ^^'i)PPpi

which can be true with independcMit j/f^/s only if
-

- a'p for all p.

Thus according to (1) each ip determiners uniqiurly a. set of numbers
ap and, conversely, eacli set of a,rbiti‘ary numberrs eq, derteianirurs a, ip.

There is a one-one corres[)ondene(r Ixrtween tlu‘ j//’s and the sets of

numbers a^.
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If corresponds to the set of numbers and if}^ to the set b^,

we have
/ ^ ^ i i

*ra Tp) t^6 ^p Tp^

and hence = X«(a^+ K)Pp,

so that i/f<x+*/'6 corresponds to the set {ci^~\-b^). Also, if c is any
number, corresponds to the set ca^. Thus all the properties of

the i/f’s of addition and multiplication by numbers are possessed also

by the sets of numbers corresponding to them. The sets of numbers
thus form a representation of the ip’s, each p being represented by
one set defined by (1). The will be referred to as the funda-

mental Ip’s of the representation. If we take a different set of funda-

mental tp’s, we shall get a different set of numbers to represent each

tp, so that we shall get a new representation. There is one representa-

tion for each complete set of independent p’s, since they may always

be taken as fundamental p’s. In the vector picture of the p’s the

numbers representing any p are its co-ordinates relative to certain

axes (which may be oblique), which are determined by the funda-

mental p’s. The different representations are then the co-ordinates

referred to different axes. A state is defined by the ratios of a set

of numbers to each other, since a p can be multiplied by an

arbitrary number and will still represent the same state.

We shall now consider how an observable a. is to be represented.

If 'Ac is any fundamental p of a, representation of p’s, we can form

the product ocp^ and expand it in terms of the fundamental p’s in the

form (1), thus
OCpQ p^ ^pq^ (2)

where the coefficients are numbers, which depend of course, as

the notation imphes, on the suffix q of the p on the left-hand side.

We have put the coefficients in (2) on the right-hand side of their

respective pfs, instead of following the usual practice of putting

coefficients on the left, so that the order of the two suffixes may be
more easily remembered. That suffix of which is nearer to the p
is the same as the suffix of the p. This is an example of a rule which
will be used very extensively in the future.

Each observable ot determines uniquely through equation (2) a set

of numbers Conversely, each set of numbers determines an
observable a. There is thus a one-one correspondence between ob-
servables OL and sets of numbers These sets of numbers are the
representatives of the observables. The correspondence between the
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properties of the sets of numbers and those of the observables will

now be investigated.

Each set of numbers representing an observable is twofold, on
account of the two suffixes, and may most conveniently be written
as a matrix array, each number of the set being the element of
the matrix in the jp-th row and g-th column. Thus each observable
is represented by a matrix. The number of rows and columns of the
matrices is eq[ual to the number of fundamental ip’s of the representa-
tion and one row and one column correspond to each fundamental ip.

A row and column that correspond to the same fundamental ip corre-
spond to one another. An element of the matrix that lies in a row
and column corresponding to one another, i.e. an element of the type
oipp, is called a diagonal element, since all such elements lie on a
diagonal of the matrix when the rows and columns are arranged both
in the same order.

If an observable a is represented by the matrix and an observ-
able ^ by the matrix then it is easily verified that the observable

is represented by the matrix oc.p^-\-^pg, and the observable ccx.,

where c is a number, by coCp^. These results may bo expressed in

symbols by the equations

(a:
1 pq ^pq \~^pq (3)

^^pqi (4 )

which are the ordinary rules for the addition of mativices and for the
multiplication of matrices by numbers. Again, if the'! product is

represented by the matrix {oL^)pq, we have by definition

But we have also
{oi^)lpq = 0!.{^pq) = OL S,. ipr^rq

By equating the coeffieients of ip.^^ in the right-hand side's

(()), which is ])er‘nnHsi bie^ sineio tlu> j/r’s are*! all ineh^pe>nele>nt,

(5 )

(6)

of (r>) arid

we ol)ta.in

^'^pr^rq- (*7
)

'Thus the matrix rejwe,^e7itvn(j cy-jS equals the. 'matrix reprcseiiiinq ex 'mulli-

plied by the matrix representimj (3, arxordimj to the rule for matrix
rmdtiplication. The pa.rticular a.rra.ng('aie'iit of the' suClixe's of
chosen in the defining e^epiation (2) is ne'eu'ssary in orde'r that this nih'
of matrix innltiplieaition may hold. If inste^ad of (2) wo ha,d put

*A/>’

I
3595
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we should have found for the law of multiplication

'^r ^rg (®)

which is not so convenient as (7).

Equations (3), (4), and (7) show that the properties of observables

of addition and multiplication are all faithfully reproduced by the

properties of the matrices representing them, and justify our saying

that the matrices do represent them. Matrices, like observables,

satisfy all the laws of ordinary algebra except the commutative law

of multiplication.

It has been mentioned that a number may be regarded as a special

case of an observable. The matrix representing a number c has its

elements c^q

which gives

defined by =
c_ = c, = 0 (P^q).

Thus the matrix representing c is a diagonal matrix, i.e. all its ele-

ments vanish except the diagonal ones, and further all the diagonal

elements are equal to c. We can put

where the symbol is defined by

Spp = 1, Spq = 0 {p ^ q). (9)

The numbers 8^^ are the elements of the matrix representing unity,

which matrix has the property that it leaves unchanged any matrix

when multiplied into it on either the left- or right-hand side.

We shall now obtain the law of multiplication of the representwlives

of an observable and, a ift-symbol. Let ij/ be represented by the set of

numbers a^, as according to (1), and let the ^-symbol ocij/, where a is

any observable, be represented by the set of numbers b^, so that

We have from (1)

oiljj = Xq Ipqbq.

Oitfs== cxXp ijjp ttp

^gv ^p

'

Hence, equating coefficients of ijjq, we get

bq

which is the required multiplication law. It suggests that we should
regard the set of numbers ap as a matrix, having rows corresponding
to the various fundamental j/f’s of the reiDresentation, but having only
one column. Equation (10) would then be the law of multi j)]ieation

of such a matrix with a square matrix
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The correspondence that we have found between the properties of

observables and ^-symbols and those of their representatives, which
is exemplified in equations (3), (4), (7), (10), allows us to take over
any equation between the abstract symbols into an equation between
the representatives. Suppose, for instance, that we are given the

equation + 4,"

,

(11 )

where a, yS, and y are three observables and if/, and xjj" are three

states. By equating the representatives of each side of this equation,

making use of the law (10), we obtain

where a^, and a'p represent ijj, xp'

,

and ip" respectively. From (7)

^/I'r ^33 “^33 'Vq'p ^33 1~ •

we now get
'^QT t^rp

Each symbol in the original equation (11) is here replaced by its

representative, occurring in the corresponding position. The suffixes

are arranged according to very simple and easily remembered rules,

each consecutive pair of factors in any term having a common suffix,*

the two positions of this suffix being consecutive in the scheme of

suffixes, while the suffix that occurs first in any term is the same for

every term. A summation is taken over each suffix that occurs twice

in a term.

As examples of equations that can be taken over in this way may
be mentioned any of the equations between the abstract symbols
occurring in the theory of eigenvalues of the preceding chapter.

Equation (1) of that chapter, for instance, gives

aa.'p-

If the matrix is known, then we have here an ordinary set of

simultaneous algebraic equations for the unknowns and also the

unknown a. Any value of a for which these equations have a solution

(not identically zero) may he called an eigenvalue of the matrix

If we eliniina,te! tlie unknowns u.., in which the equations are linear

and homogeneous, we gtd the deteriuinaiital equation

cx 11

(X

a Oi12

21 (f

‘^22 (X (I

0

(12 )

to determine the eigcvuvaliums (i. d’he eigmivahuss of a. matrix repre-
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senting an observable must, of course, be the same as the eigenvalues

of the observable itself.

§21. Orthogonal Representations
We have not yet considered how ^-symbols are to be represented.

We can always treat (/>’s analogously to i/f’s, so that we can take any
complete set of independent ^’s,

<f>^
say, and call them the funda-

mental of a representation. If we then expand an arbitrary cf> in

terms of them, thus j * / /los= (13)

the set of numbers will form the representative of this
<f>.

Again
if (X is any observable, we can multiply it into a fundamental <!>, <l>p,

obtaining a product a, which we can expand in terms of the funda-

mental g?i’s, thus
(14)

The coefficients will then form the matrix that represents a. It

may easily be verified that the matrix laws of addition and multi-

plication, equations (3), (4), and (7), hold also for the representatives

of observables in the present representation in terms of fundamental
^’s. It should be noticed that the arrangement of the suffixes in

requires the coefficients on the right-hand side of (14) to occur on
the left of their respective (^-symbols, the opposite to what it was for

equation (2). The particular arrangement of suffixes chosen in (14),

like that chosen in (2), is necessary in order that we may have the

multiplication law (7), which obeys the suffix rule, instead of the

multiplication law (8).

We can in this way get a representation of observables on the basis

either of a set of fundamental ^’s or of a set of fundamental */»’s. The
question now arises whether a set of fundamental </>’s and a set of

fundamental i/r’s can be such that they both give the same repre-

sentative for each observable. If this is so, we could count them both
as belonging to the same representation, so that we should have one
x'epresentation comprising representatives of both ^’s and i/f’s as well

as observables. A necessary condition for the fundamental ^S’s and
fundamental ^’s to give the same representatives for observables is

that they shall be labelled by the same set of suffixes p, q, r ... ,

which suffixes will then label the rows and columns of the matrices.

Thus to each fundamental ip there will be a corresponding funda-
mental (p having the same suffix. According to the notation that we
have used hitherto, when a ip and a p have the same suffix they are
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conjugate imaginary symbols denoting the same state, but this will

now no longer hold.

We have already used the same suffixes for the fundamental ^’s

in (14) as for the fundamental i/j's in (2), so that we can investigate

the consequences of these equations on the assumption that the

coefficients are the same in each, for every observable a. If in

(14) we change the summed suffix q to r and then multiply by on

the right, we obtain
<f>^CXxfjq = ( 1^)

Similarly, if in
(
2

) we change the summed suffix to r and then

multiply by cl>^ on the left, we obtain

cf)^Oilffq = (lb)

The right-hand sides of equations (15) and (16) can be equal for an

arbitrary observable a, i.e. for arbitrary a^^’s, only provided

= ^ S')
(1'7)

and xjj^ = c,

where c is a number independent of p. We may without essential

loss of generality take c = 1
,
so that we have

Equations (17) and (18) can be combined in the single equation

=
(19 )

This is the condition that a set of fundamental 96 ’s and a set of

fundamental 0 ’s may both be considered as belonging to one rej)re-

sentation.

With the help of these conditions we can easily obtain explicit

expressions for the coefficients in the expansions. Thus to determine

the coefficients occurring in ( 1 )
for the expansion of an arbitrary

0 we have
0^ 0 0qf 0p ^'p ^pg

= Clg. (20)

Similarly the gerleral coefficient dq'^' in (13) for th'e expansion of an
arbitrary 0 is

(21)

Again, from (14) we obtain

(22 )

which gives explicitly the elements of the matrix re|)resenting any
observable. This result could also have been obtained from (

2 ).
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In obtaining a general representation for both <f>’s and tp’s as well

as observables, we have had to abandon the notation of a ^ and ^
which have the same suffix being conjugate imaginary symbols de-

noting the same state, and this results in the representation being

inconvenient and not very useful. The fundamental ^’s and 0’s may,
however, be such that each fundamental </> and 0 with the same suffix

are really conjugate imaginary symbols denoting the same state, in

which special case there is no need to abandon this notation. Such
a representation is a particularly useful one. It is called an ortho-

gonal representation. The set of states denoted either by the funda-

mental 0’s or by the fundamental 0’s may be called the fundamental
states of the representation. The condition (17) shows that these

fundamental states are all orthogonal to each other and condition

(18) shows that the 0’s and 0’s representing them are normalized.

The vector picture of 0’s and 0’s provides us with a simple geo-

metrical interpretation of an orthogonal representation. In this

vector picture each 0-symbol and the conjugate imaginary 0-symbol
are to be pictured as conjugate complex vectors. We can without

inconsistency suppose that each fundamental 0 and the conjugate

imaginary fundamental xJj of an orthogonal representation are to be

both pictured by the same real vector. Condition (17) now shows
that these real vectors are all mutually perpendicular and condition

(18) that they are each of unit length, so that they form the basis

for a rectangular Cartesian system of co-ordinates. The numbers
representing an arbitrary 0 or 0 are now its co-ordinates in this

system. Since the system of co-ordinates is real, a 0 and the conjugate

imaginary 0, pictured as conjugate complex vectors, should have
conjugate complex co-ordinates, and thus they should be represented

by conjugate complex sets of numbers. It is easily verified, by com-
paring equations (20) and (21), that this is the case. Thus a state is

represented by the same set of numbers whether it is denoted by a 0
or a 0, apart from an uncertainty in the sign of i.

If O' is a real observable, then from equation (22) we find that the

elements of the matrix representing it satisfy

in the case of an orthogonal representation. A matrix for which this

condition holds is called Hermitian. If in addition all the matrix
elements are real, we have i.e. the matrix is symmetrical.
Trom (22) we also find that a diagonal element oc.^^ is equal to the
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average value, according to § 11, of the observable for the corre-

sponding fundamental state ijj^. If a is not a real observable, then
its conjugate complex observable a, defined in § 10, has matrix ele-

ments to represent it, given by
~ ^rp' (23)

The matrix may be called the conjugate complex matrix to

§ 22 . The 8 Function
We have assumed throughout the above investigation of representa-

tions that the number of fundamental i/f’s, if not finite, is at most
infinite enumerable, so that each of them can be labelled by a suffix

^ taking only a discrete set of values. For most dynamical systems

of interest this condition is not fulfilled, the total number of indepen-

dent states being infinite and equal to the number of points on a line.

In such cases we must label each of the fundamental i/f’s by a suffix

^ that can assume any value in a certain range. The condition (1),

which expresses that any e/f is a linear function of the fundamental
i/r’s, must now be rewritten with an integral instead of a sum, thus

ifj = j (24)

The domain of integration is to be understood to be the whole range

of p used for labelling fundamental 0’s. The coefficients <5^^, form a

function of the continuous variable p.

It is not strictly true that every 0 can be expressed in the form

(24) when the coefficients are restricted to be finite, which is, of

course, implied when one says they form a function of the continuous

variable p. An example of a 0 that cannot be expressed in this form
is one of the fundamental 0’s, 0^ say, itself. Another example is

difs^jdq when 0^ involves the parameter q in a manner sufficiently

continuous for this differential coefficient to exist. It would be incon-

venient if throughout the subsequent theory we were continually

being reminded of the fact that there are exceptional 0’s which can-

not be expressed in the form (24). We get over the difficulty by
allowing infinities of certain types to occur in the coetficicMits rq,,

which enables every 0 formally to be expressed in the required form.

This is analogous to the device sometimes used in geomedry, of

avoiding the exception of parallel lim^s to tire rule that two straiglit

lines always meet in one ])oint, by saying that par-alkU linens meed in

a point at infinity.

We observe that those 0’s that are not of the form of the right-
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hand side of (24) with finite a.^ can always be regarded as limits of

i/»’s that are of this form. We can, for instance, express by

= lim J dp,
7?, —>00

where the coefficients satisfy

limja^^dp=l,
n—>00

lim = 0 (for p^q)-
n“> CO

As one approaches the limit, becomes a function of p which

vanishes for all values of p except those very close to q and which is

so large for values of p in the immediate neighbourhood of q that its

integral is unity. We can now say formally that

where = lim
n—>00

This we can say, is an improper function of the variable p, having

the value zero for all values of p except q and the value infinity for

p = q^ the infinity being such that its integral is unity. It is thus

a function of the two variables p and q which depends only on their

difference, so that we can put

where the improper function 8{x) is defined by

I
B{x) dx = 1

8(x) == 0 (for X ^ 0).

The introduction of the S function into our analysis will not be in

itself a source of lack of rigour in the theory, since any equation

involving the S function can be transcribed into an equivalent but

usually more cumbersome form in which the S function does not

appear. The 8 function is thus merely a convenient notation. The
only lack of rigour in the theory arises from the fact that we per-

form operations on the abstract symbols, such as differentiation and
integration with respect to parameters occurring in them, which are

not rigorously defined. When these operations are permissible, the

S function may be used freely for dealing with the representatives of

the abstract symbols, as though it were a continuous function, with-

out leading to incorrect results. We can, in fact, even give a meaning
to the 8 function of an observable, provided it has a continuous range

of eigenvalues, by means of the general definition of § 15.
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Certain elementary properties of the S function, which are de-

ducible from, or at least consistent with, the definition, should be

noted, namely,
S(

—

x) — 8{x)

xS{x) = 0 (26 )

and f{x)S{x—a) dx (27 )

where f{x) is any continuous function of x and a is any number, and
the range of integration is any range through the point <x, the limits

oo and —oo being put down merely for definiteness. Thus the opera-

tion of multiplying by S(jr

—

a) and integrating with respect to x is

equivalent to the operation of substituting a for x. This is still true

when the operation is applied, not to an ordinary function f{x) of x,

but to a ^-symbol or an observable involving the parameter x, pro-

vided it is reasonably continuous in x. We are, in fact, making an
application of this rule, with the j/^-symbol forf(x) and the number

q for a, when we assert that (24') holds with defined by (25).

A further property of the 8 function is

8(a

—

x) dx 8(x— b) 8(«— b). (28 )

To prove this rekition, wc i*cgard the left-hand side as a function of

the number b and put it equal to F{f>). We see at once that F{b) —- 0

if b is not equal to a, and also we have

F{b)db S{a— if
)
dx

I 8 (;f— b ) db

8 (rt

—

X ) dx = 1

.

'I’hus F{1)) satisfies all the conditions tliat dc^in(^ 8(6 (i) and may
hence he put e(pial to 8(6 a) or 8(<'r b). M<pia.ti()tv (2S) would ha.vc!

been ol)ta.ine(l from ecjuation (27) if for /'(.r) wt': had suhsti tutxal the;

improper function 8(.r b). This is an ('xainph' whi(0i i 11 ustra.t(\s liow

a 8 function may hc^ list'd as though it a <a inf, in nous function

without leading to iiuairri'ct results.

In order to put in the: foi in of thi' right, hand sid<' of (2 1) it

is necessary to ust'- the dci-ivativc: 8'(.r) of tlu^ function 8(.r). dliis

derivative is, of course, an vvvii moI•t^ discontinuous and iin|>ro{)(n-

function than 8(x) itself, hut in nia,ny casi's it can also he ust'd fi'cely
3595
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as tlioiigh it were a contiimous function of x without leading to

incorrect results. It has the elementary properties

§'(—x) = —8'(x)

and
'00

f(x)8'{x—a) dx =
-S(a;) (29)

(30)
• 00

for any differentiable function of x, which may be a i/r-symbol or

observable involving a: as a parameter. The second and third of these

relations may be obtained by differentiating (26) with respect to x
and (27) with respect to a respectively. The third one may also be
verified by an integration by parts, thus

1

O0 P “1 oo Poo

f(x)8'(x—a) dx = I f(x)S(x—a) — I f'(x)8{x—a) dx
— CO L J — CO J -- oo

from (27). A further property is

%

QO

8'{a—x) dx S(a:

—

b)
OO

8'{a—b), (31)

which may be obtained by differentiation of (28) with respect to a.

It may also be obtained from (27) if one puts 6 for a and then takes
S'(a—x) for f(x), and is then an example of how the S' function may
be used as though it were a continuous function.

If for f(x) in (30) we put p being the variable instead of ;r, and
if we put q for a, we get

4fp^'{p— q)dp=^dtJj^j8q.
J — CO

This shows that dif/^jdq may be expressed in the form of the right-

hand side of (24) with — ^'{p— q) for aj,. By making use of higher
derivatives of the S function, one can express d-ijjjdff, &c.,
also in this form.

§ 23. Case of a Continuous Range of Fundamental StatesWe can now generalize the theory of the representation of states and
observables to apply to systems for which the number of independent
states is equal to the number of points on a line. The ip on the left-

hand side of (24) will be represented by the numbers that occur
as coefficients on the right-hand side, or by the function of the
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continuons variable p. Also if a is any observable, corresponding to

(2) we can expand a?//^ in the form

“’Aa = dp (32)

where the are numbers, and these numbers, which form a function

of the two continuous variables p and q, will then represent the
observable a. It is sometimes convenient to call this function of two
variables a matrix, in order that one may use the same words in

talking about the case (32) as about the case (2). The number of

rows and columns of such a matrix is equal to the number of points

on a line. Corresponding to the multiplication law (7), we now have

J* ^pr ^rq’ (33)

which may be proved in an analogous way. Similarly, corresponding

to (10), we now have that the function of p representing aip is

given in terms of that representing by the relation

= J dp a.^. (34)

If we regard the number c as an observable, its representative

will, by definition, be given by

so that
cifjg = J dp

cSip—q).

(35)

(36)

The matrix representing unity is now that whose general element is

S(p— q) and it still, of course, has the property of leaving unchanged
any matrix when multiplied into it on either the right- or left-hand

side. If we compare these results with the corresponding ones for

the case of discrete fundamental i/r’s, we see that the only difference

is that the two-suffix S-symbol, defined by (9), is replaced by the

S function of the difference of the two suffixes. It is a general rule

that the two-suffix S-symbol is always to be replaced by the S func-

tion in this way when one passes from the case of sums to the case

The connexion between the fundamental j/;’s and the fundamental

«^’s of the same rex)resentation is now

= Hp—a)> (37)

which is obtained from (19) by replacing the two-suffix S-symbol

according to the rule. This condition (37) implies that is infinite.

Thus the law of § 8 that any </>-symbol can be multiplied into any
j/f-symbol, giving a number as product, must be relaxed to allow the

possibility of the jDroduct being infinite.
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When each fundamental
(f>
and fundamental i/r with the same suffix

are conjugate imaginary symbols denoting the same state, we have,
as before, an orthogonal representation. We shall now consider the
meaning of equation (37) for an orthogonal representation. This con-
dition (37) may be split up into the two conditions

=0 (i^ =7^ O')

^ = 1. (39)

The first of these, corresponding to (17), again expresses that any
two fundamental states are orthogonal. The second, corresponding
to (18), is sometimes taken as the definition of the normalization of

i/fg when the suffix q labelling the independent states ifj^ takes on a
continuous range of values, instead of the condition cf>g^q= 1, which
would now be mathematically useless, as it would require the ^’s and
0’s in (37) to be all multiplied by infinitely small coefficients. If,

however, one changes the definition of normalization in this way, one
must remember that the laws for the physical interpretation of the
theory hold only for the old definition. The general law given at the
end of § 11, that is the average value of the observable oc for

the state 0^ provided 0^0^= 1, is of universal validity, for the con-

tinuous as well asfor the discrete case. It is true that for the continuous
case will in general be zero when —

1, but, as the' applica-

tions of the theory will show, this is what the physics then requires.

Only the ratios of the averages of different observables are then of

interest, and for the calculation of these the normalizing condition

(39) is useful.

With the help of (37) we obtain from (24)

0g0 = 0^ J apifx^ d'p=] dp = (40)

by making an application of (27). This result, corresi^oiiding to (20),

gives explicitly the coefficients on the right-hand side of (24) repre-
senting 0. The conjugate imaginary 0 is represented by the numbers

corresponding to (21), which are the conjugate complex
numbers to ag in the case of an orthogonal representation. Again,
from (32) we obtain

0^ a0g = J 0r dp = J S(r—^) dp oi^^g = oL^g, (41

)

which, corresponding to (22), gives explicitly the elements of the
matrix representing a. We no longer, however, have the result that
a diagonal element (Xgg is for an orthogonal representation the average
value of od for the state 0^, since the normalizing condition (37) which
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is here used is not the correct one for physical interpretation. This
result would give, if for example we took oc equal to unity, the value

= oo, whereas the average value of unity must of course

be unity.

§ 24. The Weight Function
It is sometimes convenient to modify equations (24), (32), which
define the representatives of a state and observable, by the introduc-

tion of a weightfunction. We can take any function of the variable

p which is defined throughout the range of p used for labelling the

fundamental states and which has no zero values, and put instead

(24). (32)
ip

J P'p (^^

)

Oiipq ^pPji ^'P (^^)

We can now consider the new coefficients and cx^q to be the repre-

sentatives of the state and observable. This does not give any
essential generalization of the theory of representation, since the new
representatives are connected with the original ones by very simple

relations. It is merely a device which is convenient in certain applica-

tions of the theory, usually for increasing the symmetry of the

equations, or for making more direct the physical interpretation of

the representatives which will be given in § 28. We could, of course,

adopt the same device in the case of a discrete set of fundamental
states, but there do not seem to be any examples for which it is then
of any value.

When the weight function p is introduced it must appear, not only

in the expansions (42), (43), but in all formulas which involve an
integral over the parameter p that labels the fundamental «/f’s, e.g. in

the multiplication law for two observables, equation (33), which
becomes

(^/^)/>r/ / ^pr Pr ^rq’

and in that for an observable with a ip, equation (34), which becomes

J ^q2y Pp et/jp.

Again, the number c, regarded as an observable, is no longer repre-

sented by the right-hand side of (30), since instead of (35) we now
have

Cijj^
J Pjj

dp
which gives

pq (‘PvHp—q) = (^pq^Hp—a)^
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The unit matrix is thus changed from —
q) to p'^^{p— q)- This

suggests that equation (37) should be changed to

a conclusion which is confirmed when one notes that the normalizing

equation (39) must be changed to

J <^33 ^qpp dp = 1. (45)

We can now see what changes must be made in the representatives

of states and observables when the weight function is introduced.

If we multiply the and of equations (37) and (39) by they

will then satisfy equations (44) and (45). We must then multiply the

of equation (24) by in order that it may satisfy (42) and the

of equation (32) by in order that it may satisfy (43).

These results are particular cases of the general rule that any symbol

involving the suffixes p, g, . .
.
gets multiplied by {pppq . .

.)~^ when the

weight function is introduced. From this rule one can see the

necessity for the insertion of the factor p^ in every integral with

respect to the variable p, when one bears in mind that the integrand

must contain the suffix p twice.

§ 25. General Case of Representation

In most of the applications of quantum mechanics the atomic system

dealt with has a still larger number of independent states than we^

have hitherto considered. The fundamental states of a represetitation

can then be labelled conveniently only by means of several suffixes

Pi^i P2 ’ • •
3 Pn’ which can take on any values within a given domain

of the 7i-dimensional ;p-space. The generalizations which must now
be made in the preceding theory are quite obvious. must have,

for instance, instead of (24) and (32), the expansions

'/' = n . . .

• • (46)

. . .

“
- *^Pl^P2 • • • . . . (47 )

A state ip is now represented by
. 3

function of the ^t-variables

Pi, p 2 , . .
. ,

and an observable ex by
^ . . . 3

‘matrix ’ whose

rows and columns are both labelled by these same variables, 'bhe

j/f-symbol ... 3
one of the fundamental states, is represented by

^{Pl 9^i)^(5^2 9
^

2 ) ••• ^{Pn ^n)’ (
48

)

as may easily be verified by substituting this expression for

in (46) and carrying out the integrations one by one with the help
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of (27). It is always this product (48) that replaces the 8(p—q) of

the one-dimensional case. In the same way the ^-symbol

is represented by

a
0,«l«'2

[m — 1,2, ...n)

^(^^1 9^i)^(jP2 9^2) * • • ^(^*7/1—1 ^'P'nx 9^772. fl) • •

S'™). (49)

as may easily be verified with the help of (30). This expression differs

from (48), apart from the minus sign, only in the m-th factor.

We must make a still further generalization in order to include all

the cases of representation that occur in practice, namely, we must
allow both sums and integrals to occur together. In the one-

dimensional case, for instance, we can have

ijj=Xpapiljp-\-^ (
50 )

The discrete set of numbers ap together with the continuous set

now represent the state ip. They may be considered as a function

of a variable whose domain consists of a continuous range together

with some discrete points. In the many-dimensional case we can
have sums for some of the variables and integrals for others. The
general rule applying to every case of representation is that a state

is represented by a function whose domain is such that every point

of it corresponds to one of the fundamental states. There is no
restriction on the number of points in this domain or on their arrange-

ment in the ^-space that labels them. Thus the domain may consist

of discrete points together with a number of continuous regions each

liaving any number of dimensions. An observable is represented by
a matrix whose rows and whose columns are in one-one correspon-

dence with the points of this domain.

'^riie equations of our previous theory of representation can all be

taken over without difficulty, but cannot very well be written down
in a form that includes all cases without an elaborate notation. We
shall therefore take simply the case when (50) holds as an illustration.

Corresponding to (2) and (32), we now have, for the definition of the

representative of an observable,

OLlpQ — ^pOLpQ-\~^ ifjj, d'p OCpQ

OUpq \ *Ajj

There are thus four kinds of coefficients in the representative of an
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observable, typified by apQ, up^, oc^, corresponding to the dif-

ferent cases of discrete or continuous values for the suffixes. Again,

corresponding to (7) and (33), we now have for the multiplication

law for the representatives of observables,

{cl^)pq = hp ixpp^pQ
-f-J ttpr dr

(“^)p<3 = +JV ^<'Q

(tx^)pq = S/J OLpp^pg -|-J
OLpr dr

(“^)w
= °^pRhq +1V ?rr

Tn each case there is a sum over E and an integral over r. The con-

ditions (19) and (37) become

These examples are sufficient to show how each equation is to be

interpreted in any of the various kinds of representation that may

arise.

We can make a final generalization by introducing a weight func-

tion in the general case. This weight function p
may be an arbitrary

function of the variables that label the fundamental ijj’s, provided

it never vanishes. It will always appear along with the differentials

dp^ in any integration and will also appear, to the power of -1, in

the unit matrix.



V
TRANSFORMATION THEORY

§ 26. Eigenstates as Fundamental States of a Representation
In the preceding chapter the idea of a representation of the abstract

symbols was introduced and was treated entirely from a general

mathematical point of view, the representatives being like co-

ordinates of the symbols referred to a general co-ordinate system.
We must now consider particular representations, i.e. co-ordinates

referred to particular co-ordinate systems, which must be singled out
and specified in a certain way. We shall find, incidentally, that our
representatives now often have direct physical interpretations. We
shall be concerned here and throughout the future work only with
orthogonal representations.

An orthogonal representation is built up on the basis of a complete
set of orthogonal states, forming the fundamental states. Such a set

of states is obtained most easily with the help of the theory of eigen-

values of Chapter III. If we take a set of real observables that all

commute, their simultaneous eigenstates form a complete set and any
two belonging to two different sets of eigenvalues are orthogonal. If

the set of commuting observables is a complete one, then, as shown in

§17, there is only one eigenstate for each set of eigenvalues, so that

the eigenstates must now all be orthogonal. These eigenstates can

therefore be taken to be the fundamental states of a representation.

Each of them is associated with one set of eigenvalues, which may
conveniently be used for labelling it, instead of the arbitrary suffixes

of the preceding chapter, which have no physical meaning. Thus
if the commuting observables are ... ,

and if we denote the

eigenvalues of by ... a fundamental >// may be written

•• in)’ simply for brevity. In the same way a funda-

mental </) may be written The fundamental </> that is conjugate

imaginary to ipd') will be

The notation of primes and multiple primes to denote the eigen-

values of an observable is very convenient and will be used generally

in the future. A new notation for the representatives of states and
observables will now be introduced, which will greatly increase the

symmetry in our equations. A general i/r-symbol ip is represented by
a set of numbers, each of which is associated with one of the funda-

3595 L



74 §26TRANSFORMATION THEORY
mental if/’s and thus with one set of eigenvalues. That particular one
of the set of numbers which is associated with the eigenvalues

i '2
- "in will be written ^2 ••• (^^|) brevity. When

it is necessary to particularize the 0-symbol by a suffix, k say, we
can insert this suffix in the rej)resentative of 0/^

to the right of the
vertical line, thus ^2 • • • ^n\^) or {^'\k). The reason for this nota-
tion is that, as we shall see later, there is a remarkable symmetry in
the way (I'jA;) involves the set of numbers referring to one of the
fundamental 0 ’s, on the one hand, and the parameter k which
specifies the 0 that is being represented, on the other. This symmetry
is exactly expressed when one puts the ^'’s and the k to the left and
right respectively. In a corresponding way we shall write the repre-

sentative of a general 0-symbol as (||^') and of a particular one,
as (^||'). For the representative of an observable a, we shall write
the matrix element associated with the fundamental states

03,
and 0^, as ^2 ... ^2 . .

. |;), or as for brevity,
where the ^'’s and ^"’s are the eigenvalues belonging to the funda-
mental states 03,

and 0^ respectively, or 0(^') and 0(^"), as they
would be written in the new notation.

Some of the equations of the preceding chapter will now be written
in the new notation to illustrate how it runs. Equations (3 )

and (
4 )

become
(fia-f-^lD = (f |a|r)+ (r!^|n

(ricc.|r') = c(r|cx|r).

Equation
(
1

)
or (24), defining the representative of a 0-symbol,

becomes, if we take for definiteness the case when each of the
has a continuous range of values,

0 = j0(n^^'(ri), (1)

where d^' is short for the product cZ^2 • - mid only one
integral sign is written to denote integration over all these variables.
It should be noted how, when one puts the d^' in the proper place,
all the I' s in ( 1 ) occur together. This is the new form of the suffix
rule given near the end of § 20 . Equation

(
2

)
or (32) of the preceding

chapter, defining the representatives of an observable a, becomes in
the same way = J
Again, the multiplication law for the representatives of two observ-
ables, equation (7) or (33), becomes
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and that for the representatives of an observable and a xp, equation
(10) or (34), becomes

mh), (3 )

where k specifies the i/r-symbol and I specifies xpi = The con-
jugate complex d of an observable oc is now represented by

(r|a|r)=- (rhiD, (4)

corresponding to (23), and the representatives (i'\) and (|f) of a ^
and its conjugate imaginary <p are conjugate complex quantities.
The representation we are now considering is built up from a num-

ber of commuting observables ^2 .
• - - ,

whose simultaneous
eigen-i/f’s are taken as fundamental xp’s. Let us determine how one
of these observables, say, is itself represented. Putting for oc

in (2), we get
j di' {i'lgji")- (5),

But since ip{$") is an eigen-j/f of belonging to the eigenvalue
we have _ j (6)

where — i") is short for the product S(^j— ^i)S(^2~^2 ) • • •

Equating coefficients on the right-hand sides of (5) and
(6), we obtain

(g'\g„,\g") = g:„Hg'-g"). (7)

This, of course, is equal to |;;,S(^'— ^") and is therefore symmetrical
between the singly and doubly primed symbols.

If the |^'’s take on discrete sets of values instead of continuous
ranges, we should obtain instead of (7)

where is short for the product Thus the

observable is represented by a diagonal matrix, whose diagonal ele-

ments are its eigenvalues A diagonal matrix, in the case of con-
tinuous ranges of rows and columns, may conveniently be defined as

one whose general element (^', i") involves the 8 function S(^'— |")

as a factor, like the right-hand side of (7), and the coefficient of the
8 function may be defined as the general diagonal element. With
these definitions the above law in italics for the representative of

holds in all cases. The appropriateness of this definition for a
diagonal matrix in the continuous case rests on the fact that, as is

easily verified, it makes two diagonal matrices always commute,
which is one of the most important properties of diagonal matrices
in the discrete case. For this reason it would not be sufficient to
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define a diagonal matrix in the continuous case merely as one whose

general element vanishes except when the dif¥er infinitely

little from the ^'’s.

If /(l^) is any function of the ^-’s, then its representative is found

to be, by a similar argument to that leading to (7),

(fl/(^)ir')=/(r)S(i'-r). w
The coefiScient/d') must, of course, have a meaning since the func-

tion / must be defined for each of the eigenvalues of the ^ s. Thus

the representation based on the simultaneous eigen-i/» s of a set of

observables as fundamental i/f’s is such that the representative of

each of the |’s and of any function of them is a diagonal matrix.

Conversely, every diagonal matrix in this representation represents

a function of the |^’s, this function being specified by the general

diagonal element regarded as a function of the variables | .

Thus if we take any set of observables that co^nmute, there will exist

a representation in which each of these observables sirnwltaneously is

represented by a diagonal matrix. If the set of observables is a com-

plete one, then the representation will be completely determined by

these observables, except for arbitrary phases which arise from the

fact that a simultaneous eigen-i/r of these observables may be multi-

plied by any numerical factor of modulus unity without any of the

conditions defining it beinginvalidated . For example ,
we can multiply

each by exp[— where fif') is an arbitrary real function

of the This will require every representative of a state, j), to

be multiplied by exp if{i') and every representative’! of an observable,

d'lajl''), to be multiplied by exp'i[/(^')^

—

f{^")\- A diagonal element

remains unaltered by this transformation, as is necessary on

account of its having the physical meaning of an average. The

arbitrary phases which thus arise in the representatives are usually

unimportant and trivial, so that we may count a representation as

being completely determined by the observables that are diagonal in

it. This fact is already implied in our notation, since the only indica-

tion in a representative of the representation to which it belongs are

the letters denoting the observables that are diagonal

.

The representations considered in this section, in which each funda-
mental is a simultaneous eigen-i/f of a set of real commuting
observables, are not of a special kind, since every orthogonal rejn’e-

sentation has this property. In fact, if we take any representation,
having xfj^, ... as fundamental i/f’s, we can then form any diagonal
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matrix whose general element is of the form a^hijo—g), where
is a real function of p, and consider this diagonal matrix as repre-

senting an observable This observable will be real if the representa-

tion is orthogonal. We shall then have

= J'/'p = J'Ajp <k> apS(p—q) =
SO that each fundamental is an eigen-i/r of i. In the many-
dimensional case, when several suffixes p or q are required to label

a fundamental ip, we can take several diagonal matrices and each

will represent an observable i for which the fundamental ip’s are all

eigen-i/f’s. We can obtain in this way a sufficient number of observ-

ables ^ having the fundamental ^’s as eigen-i/f’s to form a complete

set. The notation and methods of the present section can then be

applied.

§ 27. Canonical Transformations
If we take two representations, based respectively on the fimda-

mental i/f’s ^(^'), which are the simultaneous eigen-j/f’s of a set of

commuting observables and the fundamental ip’s ip{r)'), which are

the simultaneous eigen-j/f’s of a set of commuting observables

then an arbitrary ip will have the two representatives and (17' j),

which are functions of the sets of variables and respectively.

Since a 0 is completely determined by its representative in any one

representation, there must be a connexion between the two repre-

sentatives (^'|) and (17'!) such that either is determined by the other.

We shall now investigate the form of this connexion.

From the definition of the representative (^7'
| )
we have, if we take

for definiteness the ease of integrals,

'!< = (v'\)- m
Now each fundamental ip of the 17-representation, ip(rj'), will itself

have a representative in the ^-representation. We may write this

representative with rj' on the right to show which ip it repre-

sents. We shall then have

^il') = J i^'W) (1^)

for the definition of {^'\r]'). Substituting this value for ip{ri') in the

right-hand side of (
9 ), we get

^ = j J i^'W)

which gives, on comparison with equation (1) which defines

(ri) = J(l'lV)^V(VI)- (11)
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This is the transformation equation which gives the ^-representative

of a j/f-symhol in terms of its 97-representative. The corresponding

equation which gives (17'
| ) in terms of (^'

\

)

may be shown in the same
way to be _ j (12)

where (t7'1I^') is the representative of the fundamental iff, iff{^'), in the

rj-representation.

The two representatives
| )
and (”>7'

| )
are thus linear functions of

one another; The expressions {i'\r]') and (^7'!^') which enable us to

pass from one to the other will be called transformation functions.

They are each functions of the two sets of variables and 77'. We
can obtain an explicit expression for (^'177') by multiplying equation

(10) by to the left, a process corresponding to that used for

getting equation
(
40

) of the preceding chapter. The result is

(('\v') = 4{n<pw)- (13 )

Similarly it may be shown that

(v'ln = (14 )

Hence (^'[77') and (77']^') are conjugate complex quantities.

The transformation functions must satisfy certain conditions in

order that (11) and (12) may be consistent. If we substitute for (77'])

in (11) its value given by (12), we get

{S'\)=nii'h')dr]' {ri'lndg’ (rl).
But we have also

(fl) = J8(r-r)^r(ri).
Since these equations must hold for an arbitrary function (^"

1
) of the

variables i", we can equate the coefficients of (^"j )
on their right-hand

sides. This gives

J (rw') dv' (^'iD = sii’-i"). (15)

An alternative way of obtaining this result is to apj>ly equation (11)

to the 1/1-symbol ip{i"). Since the 77-representative of this i/i-symbol is

right-hand side of (1 1) becomes J (^'177') dr]' (77' ||^"), while the
left-hand side becomes the ^-representative of ip{^"), which is, of

course, 8(|^'— |^"). The equation corresponding to ( 15 )
in which ^ and

77 have changed places, namely,

I(^Mr)^^'(rh") = S(V-^"), (16 )

may be similarly obtained. Equations
(
15

) and (
16

) are the only
conditions which the transformation functions must satisfy identi-
cally. They are of the nature of orthogonality and normalization
conditions.
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The transformation of the representatives of ^-symbols may be
treated in the same way. We should then find, for instance, the
equation

(K) = J (ID atf (^IV)
as the transformation equation which gives the representative
of an arbitrary <5^-symbol in terms of its representative (||^'), where
the quantity is now defined as the 07-representative of the
fundamental i.e. by the equation

<f>{e)= Sii'W)drj' <I>W).

If we multiply this equation by ifj{rj") on the right, we obtain, as an
explicit expression for this

which is the same as
(
13 ). Thus this quantity defined as the

17-representative of </»(^'), is the same as our previous one defined as
the ^-representative oi m that our notation of using the same
symbol for them both is justified. The symmetry which thus exists
in the way the quantity {^'\r)') involves the ^'’s and is the same as
that which was referred to in the preceding section when the new nota-
tion for the representative of a state was introduced, since any repre-
sentative {^'\k) of a specified j/r-symbol when suitably normalized,
may be regarded as the transformation function connecting the
^-representation with a representation in which ifjj^ is one of the
fundamental states.

Owing to the arbitrary phases occurring in representations, there
will be a corresponding amount of arbitrariness in the transformation
functions. If the fundamental states are multiplied by
exp[— exp[

—

igW)'] respectively, / and g being arbitrary real

functions, the transformation function {^'\ri') will get multiplied by
exp{— ^[/(^')~-^(77')]}. Thus the modulus of the transformation
function is quite definite, the indeterminacy being only in its

phase.

The connexion between the representatives of an observable a in

the two representations may be easily obtained in a variety of dif-

ferent ways. We can, for instance, use the explicit expression for the
representative of a: given by equation

(
41

) of the preceding chapter.

Applying this to the ^-representation, we get

(riHn = <?^(r)o^^(n.

If we now substitute for the right-hand side, which consists of the
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product of three abstract symbols, their representatives in the rj-

representation, we get

(fhlD = JJ crh') dr,' (r,'\a\r,'') dr," (17)

which gives the ^-representative in terms of the 77-representative.

Similarly we may obtain the result

= iUv'lOdi' {i'\oc\i")dr (rh"), (is)

giving the 77-representative in terms of the ^-representative. These
are the transformation equations for the representatives of an ob-

servable. Either representative is a linear function of the other, and
the same transformation functions are required for passing from one
to the other as for the representatives of states.

If we now take a third representation, ^ say, we shall have trans-

formation functions connecting it with the ^-repre-

sentation, and transformation functions (^'|i7'’), (77'!^'), connecting it

with the 77-representation. There are simple relations between the

transformation functions. Equation
(
13 ), with ^ instead of 77, gives us

If we substitute for the right-hand side, which consists of the |)roduct

of two abstract symbols, their representatives in the 77-representation,

g®* (rlD = J (rlV) dr,' (r,'\i'). (19)

The conjugate complex equation, which could be deduced indepen-

dently in the same way, is

a'\i')=ia'W)dr,'{r,'\g'). (20)

Equations (
19

)
and (20) give the

‘C
transformation functions in

terms of the 77 and 77, ^ ones.

If we multiply equation (
17

) by j)^dting the new factor

on the right-hand side of each term in order to maintain the " fluency
’

of the notation, and integrate with respect to we obtain

J (|'|o,|r) d^" = jn (f'l’?') dr,' (r,>|r/') dr," (r/'lf") rff" (C\r,'")

— JJ (^^|77^) dr/ (77^
I

a] 77") drj" S{r]"— 77'")

with the help of
(
16 ). Hence

f (S'Hn dr (rw") = j (rh') dr,' (vi«iv")- (21

)

We shall call either side of this equation (^'|a|77'") and consider as it

the representative of the observable oc in a mixed re/preserUaiioii ry).

It is, in fact, a matrix sufficient to determine the ()l)serval)l('! nc and
differs from the representative matrices we have i)reviously con-
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sidered only in that its rows and its columns refer to two different

sets of fundamental states and are therefore no longer in one-one
correspondence with each other. The representative matrices of two
observables in mixed representations can be added provided they are
both in the same mixed representation, i.e. we have

(r|cx+^iv) = (rhiv)+(ri^iv).
Also they can be multiplied if they are in two different mixed repre-

sentations such that the columns (specified by the letter on the right-

hand side) of the first factor refer to the same set of fundamental
states as, and are thus in one-one correspondence with, the rows of

the second, i.e. we can multiply {^'\oL\rj') into to give a product

= J(r|cx| 77')^V (VliSlD.
It should be noticed that the representative of unity in the mixed
(^, Tf) representation, i.e. (^'|1|t7'), is just the transformation function

itself, as follows at once from the definition (21). The terms
‘ diagonal matrix ’ and diagonal element ’ of course have no meaning
when applied to representative matrices in mixed representations.

Again, the representatives of the |^’s and -37 ’s themselves in the mixed
(^, Tj) representation are given by the following expressions, as is easily

verified by using the left- and right-hand sides of (21) respectively:

ii'HmW) = ii'WHm-
These representatives are thus expressible directly in terms of the

transformation function.

The equations of this section have all been written down for the case

when the parameters
,
rj', ... ,

labelling fundamental states take on
continuous ranges of values. The necessary modifications to be made
when some or all of them take on discrete sets, or both discrete sets

and continuous ranges, of values are obvious. If in one representa-

tion ^ the ^'’s take on, say, continuous ranges of values, then it is

not necessary that in another representation 77, applying to the same
dynamical system, the 77' ’s should also take on continuous ranges of

values, although if in one representation the number of fundamental
states is finite, then it must be the same in any other representation.

The transformations here discussed from one representation to

another may be called canonical transformations. One must take

care not to confuse them with contact transformations, defined in

§ 19
,
as was frequently done in the earlier literature on quantum

3595 Tvr
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mechanics. The two kinds of transformation are mathematically of

the same form, as one sees if one writes the canonical transformation

equations (17) and (18) symbolically with S and for the trans-

formation functions and {rj'\^'), hut they have qxiite different

meanings. The canonical transformation is a transformation from

one representation of observables to another representation of the

same observables, while the contact transformation is a transforma-

tion from one set of observables to another different set of observables.

For the contact transformation the new observables are connected

with one another by the same algebraic and functional relationships

as the original ones, while the corresponding results for the canonical

transformation merely express the condition that the new repre-

sentatives are entitled to be called representatives of the same

observables. The contact transformation has its analogue in classical

mechanics, as has been already mentioned, but the canonical trans-

formation, which is the more important one in quantum mechanics,

has, of course, no such analogue, since in the classical theory we do

not deal with representations.

§ 28. Probability Amplitudes
Suppose observations to be made of each of a set of commuting

observables when the system is in a given state if. The probability

of any given set of results being obtained is equal to, according to

§ 18, the square of the modulus of the corresponding coefficient in

the expansion of ifs (which is assumed to be normalized) in terms of

normahzed simultaneous eigen-j/f’s of the observables If the

observables form a complete set, there will be only one simul-

taneous eigen-j/f for each set of eigenvalues and the coefficients

in the expansion of ip will form a representative of ip, denoted by (^'| )•

The probability of the set of results being obtained now Ixecomes

1(|''[)P. There is thus a physical meaning for the ^-representative

of any normalized ip, or at least for the modulus of this representative,

in terms of the probability for a given result being obtained for a

maximum observation consisting in measuring the com])lete set of

observables The same physical meaning can, of course, Ixe given

to the representative of any normalized <p, which is just the conjugate

complex of that of the conjugate imaginary ip.

Take now the case when ip is one of the fundamental «/f’s, ip{rf), of

another representation The probability of the results being
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obtained is now given by.
\

^-6. by the square of the modulus
of the transformation function. But the state ip{r}') is the one for

which the observables rj certainly have the values 7/. Thus \{i'\r)')\^

gives the probability of the observables ^ having the values when
the 77 ’s are known to have the values 77'. For this reason the expres-

sion (^'1^') is called by P. Jordan a probability amplitude. There is,

as we saw in the preceding section, an uncertainty in its phase, but its

modulus is quite definite. The square of its modulus is an ordinary

probability. Since

i(f = (riVKvm = i(vir)p.

we have the reciprocal theorem, that the probability of the having

the values when the rfs are given to have the values 77
' is equal to the

probability of the tj^s having the values 77
' when the ^^s are given to have

the values

When the ^'’s take on continuous ranges of values, then, as men-
tioned in § 23, the fundamental ifi’s of a representation must be
multiplied by an infinitely small numerical coefficient in order that

they may be properly normalized for the purpose of physical inter-

pretations. Further, the theorem of § 18 that we have just used,

giving probabilities in tei'ins of the coefficients of an expansion, is no
longer true when the expansion consists of an integral. For these

reasons the expression we h<ive obtained for the probability of the

^’s having particular values for a given state does not hold in the

continuous case. But in the continuous case in practice we need to

know only the probability of the having vaMies lying within specified

ranges. The probability of their having particular values is zero, as

could be deduced formally from the theory. The connexion between
the probability for the state ft of the |^’s having values lying within

small s})ecified ranges and the representative of ifj, when the funda-

mental ?/f’s are normalized in accor-dance with equation (37) or (39)

of § 23, will now be obtained. '^Ilie method xischI will be to obtain the

case of continuous |^'’s as a limiting form of the case of discrete ^'’s

when there are very many of them lying very close together.

Take for definiteness the case when there is only one ^ and suppose

that it has a very large number of discrete eigenvalues lying very

close together. Let the number of eigenvalues x)©!* unit range of

be s, which can vary with in an arbitrary way. SiiX)X>ose now that

an arbitrary normalized tp is expanded in terms the eigen-i/f’s,
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which are correctly normalized for the purpose of physical inter-

pretations, i.e. (23)

so that we have ^ (24)

Then is the probability of | having the value for this state i/f.

We may assume that varies only slowly from one value of i* to

the next, so that the total probability of i having a value lying

within the range to which is small but still large com-

pared with the interval between consecutive eigenvalues will be

approximately p =
| 1

2 g'd^'

,

where s' is the value of s when is the value of its variable. With

the same kind of approximation we can replace the sum in (24) by

an integral, which gives us

i/s = d^. (25)

We must now introduce eigen-i/f’s, ^(i'), that are normalized accord-

ing to the rule for the continuous case, i.e.

1- (26)

The change in the representatives caused by this change in the

normalization of the fundamental i/»’s will be of the same nature as

that studied in § 24 caused by a change in the weight function, except

that in the present case in the limit the change is infinite.

To compare (26) with (23), we deduce from (23) the equation

which, written with an integral instead of a sum, gives

^<l>^,xp^.s'' d^" = 1 .

Since the integrand here vanishes except when ,
we can replace

s" by (s'^")^. Thus we can take

cj6(r) = rpin =
and equation (26) will be satisfied. We now get from (25)

0 = de = di' (^'1),

where (^'j), the representative of tp according to the rule for tlie con-

tinuous case, has the value

(e\) = o^,s'K

The probability P now becomes Thus the square of the

modulus of the representative gives the probability, per unit range of
of ^ having a given value. In the case when there are several observ-
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ables it may be shown in the same way that the probability of

each having a value between and

Suppose now, in this case of continuous ^^’s, that we i

one of the fundamental i/f’s, ip{r]'), of the new representaoi.

suppose the r]'’s to take on discrete sets of values. The norm
conditions (15) and (16) now become

s,-(rh')(vm = s(r-r) (io.

(29)

These are just the correct normalizing conditions for us to be able to

apply the result (27). This is because the first of them gives

(30)

[since equation (28) is just equation (30) written in terms of T^-repre-

sentatives instead of abstract symbols,] showing that the funda-
mental Ip’s of the ^-representation are normalized in accordance with

(26) ;
while the second of them gives

(31)

[since equation (29) is just equation (31) written in terms of ^-repre-

sentatives instead of abstract symbols,] showing that <p{rj')4f{v') — f

or that ip{r]') is correctly normalized for the purpose of physical

interpretations. Hence we have the result that

i(riv)iw (32)

is the probability of the ^’s having values between and
when the r]’s are given to have the values rj'. The transformation

function is still a sort of probability amplitude. From (29) we obtain

= 1
.

which shows that the total probability of having any value is

unity, giving a check on the normalizing conditions.

When both the r/’s and the ^'’s take on continuous ranges of values,

the transformation function can no longer be used to give actual

probabilities in any convenient way. It will still, however, give

relative probabilities. Even when is not normalized with

respect to rj' correctly for physical interpretations, the expression

(32) will still give the j)robability of the $’s having values between

and apart from a factor independent of It will be found

in the applications that such relative probabilities are all that is then

required.
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The two main types of problem in quantum mechanics are to
determine the possible results of an experiment and to determine
the probability of occurrence of one of these possible results under
given initial conditions. The first type consists in calculating the

eigenvalues of an observable, while the second always reduces to

calculating a probability amplitude or transformation funation and
taking the square of its modulus. A general method for calculating

the transformation function connecting a set of |’s with a set of r]’s,

when algebraic relations between the ^’s and rj’s are given, is as fol-

lows. First obtain the matrices representing the r/’s in the

^-representation, the only conditions that these matrices need satisfy

being the given algebraic relations. One can now use the equations

which follow at once from (21) and (22). These are linear integral

equations in the variables for the unknowns They are, in

fact, the standard equations of the theory of eigenvalues and the

solutions, when normalized, are just the transformation functions.

These solutions are often called eigenfunctions of the matrix
which determines them . An application of this method will be made
in § 35 to a case in which the integral equations reduce to differential

equations on account of involving the S function and its

derivatives.

§29. Example
We have seen in § 26 that if we have any set of observables that
commute with one another, then there exists a representation, called

"til® ^-representation, in which each of them is represented by a diago-
nal matrix, whose diagonal elements are then its eigenvalues. This
fact is of very great value in applications of the theory and usually
forms the starting-point in any calculation of re})resentaitives. To
illustrate how it is used, two simple examples will now l)e given,
which will later be found to be of physical importance.
The first will concern the observables p and q satisfying

qp~pq =
which were introduced in § 12. Our problem will be to find the
eigenvalues oi p^-{-q^. We shall assume that p and q are both real
observables. We can then infer by an elementary argument that

cannot have any negative eigenvalues. We see that the eigen-
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values of cannot be negative, since they are the squares of the

eigenvalues of p, which are all real. It follows that the average value

of p^ for any state ip cannot he negative. Similarly the average of

for this state ip cannot be negative. Hence the average of p^-\-q^

for the state ip also cannot be negative. Thus p^-\-q^ cannot have
a negative eigenvalue, since if it did it would have a negative

average value, equal to this eigenvalue, for the corresponding

eigenstate.

Let

We then have

A = {p-\-iq){p—iq)

= p^^-q^-^i{qp—pq)

{p-iq){p-\-iq)=p^-^q^-{-l=A-{-2,
Q^riQ 1101106

A{p-\-n) = = (i5-i-^g)(^+2).

We now rewrite this equation in terms of the representatives of the

symbols it involves, in a representation in which A is diagonal. This

gives

which, since {A'\A\A'") =
reduces to A'{A'\p~\-iq\A") = {A'\'p-\-iq\A"){A"

Hence either {A'\pA-iq\A'') — 0 or A' =- A"

A

We have by a direct application of the matrix law of multiplica-

tion, where A' is any eigenvalue of A,

(A'\(p+ iq){p-n)\A') = S,,r(A'\p+iq\A")(A"\p-iq\A'), (33)

the summation being extended over all eigenvalues A"

.

But we have

seen that {A'\pA-iq\A'') vanishes unless A" = A'— 2. Thus all the

terms in the summation vanish except the one for which A" = A'— 2.

If, now, A'— 2 is not an eigenvalue of A, then all the terms in the

summation will vanish without exception, and we shall have

0 = {A'\{pAiq){p-iq)\A') = {A'\A\A') ^ A'.

We have therefore obtained the result that if A' is any eigenvalue

of A, either A'— 2 is another eigenvalue or A' = 0 . Thus if A' is

any eigenvalue, we shall have the series of eigenvalues A', A'— 2,

A'— 4, A'— i)...
,
which cannot extend to --co since, as we have

already seen, there can be no negative eigenvalues for p'^-Aq^, which

is equal to -j- 1 . This series of eigenvalues must therefore terminate,
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and can terminate only with the value zero. Thus the eigenvalues

of A are 0, 2, 4, 6 . . . ,
and those of are 1, 3, 5, 7 ....

The representatives of p and q can now easily be obtained. Equa-

tion (33) reduces to

A' = {A'\pA-n\A' ~2){A' -2\p-~iq\A').

The two factors on the right here are conjugate complex quantities,

on account of equation (4). Hence

{A'\p-^iq\A'-2) = W,
where y' is a real function of .4'. All the elements not of this type

of the matrix representing p-\-iq vanish. The conjugate complex

observable p—iq is represented by

{A'—2\p—iq\A') = A'^e-^y,

with all the matrix elements not of this type vanishing. Hence

iA'\p\A'-2) = iA'ie^y {A'\q\A'— 2) = —
{A'—%\p\A') = \A'H-^y {A'—2\q\A') = liA'^-e-'r'

and all the matrix elements representing p and q that are not of these

types vanish. The occurrence of the arbitrary phase y' in these repre-

sentatives for p and q is in accordance with the remark of § 26, that

a representation is not completely determined by the observables

that are represented by diagonal matrices.

The eigenvalues of A form, as we have seen, a discrete set and

hence in the representation with A diagonal the number of funda-

mental states is enumerable. This is rather remarkable in view of

the fact that we can obtain another representation in which the

number of fundamental states is equal to the number of points on

a line, for example, the representation in which p is diagonal, since,

as shown in § 19, the eigenvalues of p include all numbers from —oo

to CO. Thus by counting the number of independent states of a

system in different ways, one may obtain different cardinal numbers
as result.

§ 30. Second Example
Our second example will concern three observables ol, y that satisfy

oc^—j8a = iy

Py— = ia

yoc— cx.y =
- (35)
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Our problem will be to determine the eigenvalues of oc, y, and 6.

We shall assume oc, and y are real. We can then infer that 6 cannot
have any negative eigenvalues, by a similar argument to that at the

beginning of our previous example.

We have o o / \ i / \ya"— a“y = (ya— oiy)cx.-\-<x{yoc— ocy)

from the third of equations (35). Similarly

Hence

so that

= —ioc^— i^oi.

y(a2+j32)-(«2+;82)y = 0,

yd— By — 0.

Thus 9 commutes with y, and therefore from symmetry it commutes
also with (X and Hence it commutes with any function of oc,

and y.

We thus have an observable 9 commuting with all the observables

that occur in the problem. Whenever we find an observable having this

property, we should expect to be able to treat it simply as a number in

all subsequent investigations, as by so doing we do not invalidate any
of the algebraic equations that it satisfies. A formal proof of the

legitimacy of this proceeding is as follows. We use a representation

in which 9 is diagonal, together with certain other observables, k

say, so that any observable P is represented by {9'k'\p\e"k"). Trom
the condition 9P—P9 = 0

we obtain

Hence

d'{9'K'\P\9"K")—{9'K'\P\9"j<")9" = 0.

{9'k'\P\9''k") = 0

unless 9' = 9". Thus all the matrix elements representing any observ-

able in the problem vanish unless they are of the type {9'k'\P\9'k").

It follows that when any equation between the observables is ex-

pressed in terms of their representatives, all the matrix elements

throughout the equation will refer to one and the same value of 9'.

This value for 9' need not be explicitly referred to in the notation

for the matrix elements, so that we may write (9'k'\P\9'k") simply

as {k\P\k"). The equations will now be of exactly the same form
as if 9 were a number, equal to this 9', and we used a representation

defined by the /c’s without the help of 9.

We shall apply this method to the })resent example. Thus we shall
3595 TST
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consider 0 to be a definite number and on this basis work out the

eigenvalues of y. Those of oc and /8 will be the same, from symmetry.
Any numerical value that we give to 6 which is consistent with
equations (35) will be an eigenvalue of 6. Since oc and ^ are real, we
can infer that the average value of for any state cannot exceed 6

and hence the eigenvalues of cannot exceed 6. Thus the eigenvalues

of y cannot be greater than 6- or less than —9K The fact that any
numerical value that we take for 6 must be positive or zero, since,

as we have already seen, any eigenvalue of 6 must be positive or

zero, makes this restriction on the eigenvalues of y reasonable. We
have from (35) / , -on / , -ov -o

= — (a+ i/3)

or {oL-\-i^)y = (y— 1) (a 4-^/8).

If we express this result in the y-representation, we get

{y'\oL-\-iS\y'')y" = (y'— 1) {y\oc -\-i^\y").

Hence either {y'\oi-\-i^\y") = 0 or y" ~ y'— 1. Now if y' is any eigen-

value of y,

(y'|(a-l-i/3) 0^-ij3)ly') = Xy{y'\a+ i^\y") {y"\cx~-i^\y'), (36)

the summation being over all eigenvalues y". The terms on the right-

hand side all vanish except the one for which y" = y'— 1. If y'—

1

is not an eigenvalue of y, then they all vanish and we have

{y'\{oi-\-i^) {cx~il3)\y') = 0.

^“ --|-y

— 6—-y-f-y

=- 0+l:-~(y-|)4

Hence if y'— 1 is not an eigenvalue of y, we liave

0 = (yy+ i— (y— i)-|y')

= e+i-(y'--i)-
or y' — 4 + /r,

where k is defined as the positive square root

k=^{d-V-l)K (37)

Thus if y' is any eigenvalue, we shall have the series of eigenvalues

y'
,
y'— 1, y'— 2 ..., which must terminate since there can be no

eigenvalue less than — 8-. The last member of the series must be
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either since there is no eigenvalue greater than 0^,

and thus none greater than h, it must he Thus the eigenvalues

of y are fc, |—

.

If we reverse the order of the factors in the product whose repre-

sentative occurs on the left-hand side of (36), we can deduce by a

similar argument that if y' is any eigenvalue of y, either y'+l is

another eigenvalue or y' = —^±k, and we can infer from this that

the eigenvalues of y are
|, |— By combining these

two results, we see that ^—k and fc—| must differ by an integer, so

that k must be an integer or half an odd integer. The eigenvalues

of y are then

I, k—l, I
••• —^+|j — (38)

which shows incidentally that k must not be zero, as follows also

from its defining equation (37). The corresponding value for 9 is

B—l, so that the eigenvalues of 9 are all of this form.

A new point that is brought out by this example is that if we have

two observables that commute and choose arbitrarily one of the

eigenvalues of each, then there will not necessarily exist a state for

which each observable has its chosen eigenvalue, i.e, a state that is

a simultaneous eigenstate belonging to these two eigenvalues. Thus

the eigenvalues of y include all integers and half odd integers, and

those of 9 include all numbers of the form where k is an

integer not zero or half odd integer, but there exists a state for which

y and 9 have the values y' and respectively only provided y
is one of the numbers (38). Such restrictions on the possible simul-

taneous eigenstates of two or more commuting observables do not in

any way invalidate our general theory.
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EQUATIONS OF MOTION AND QUANTUM CONDITIONS

§31, General Remarks
The theory that has been developed so far contains a complete

account of the new concepts and mathematical machinery required

in quantum mechanics and also all the general physical laws. Only

the general properties of states and observables have, however, been

discussed, no reference being made to the particular conditions that

they satisfy in the case of a specified dynamical system. We must
now consider the form of these particular conditions and so make the

theory applicable to given physical problems. It should be under-

stood that the assumptions that will now be made are on quite a

different footing from the foregoing ones. We are now concerned not

with general physical laws applying to the whole of nature, but with

special assumptions referring to a given physical problem, such as

the interaction of a certain number of electrons and atomic nuclei.

These assumptions will show how the information that we are dealing

with a certain number of particles of given masses interacting accord-

ing to given laws of force is to be made use of, and will give us

equations which may be considered as forming the mathematical

specification of which dynamical system is under consideration.

Future developments of the theory may show that these assumptions

are only approximate and require modifications
;
in fact, as they will

now be formulated, they are not in agreement with the principle of

relativity and will at any rate require modifications on this account

when applied to rapidly moving particles. On the other hand, the

assumptions of the four preceding chapters are so closely inter-

connected that one could hardly modify them in any way without
getting an entirely different scheme of mechanics, and the successes

of the theory are so great as to make it fairly certain that no such

modifications will be required, at least for the purpose of explaining

the ordinary physical and chemical properties of matter. The theory
of these four chapters is in agreement with the principle of relativity

;

in fact it is so general that it is independent of any special relations

between space and time. We must, of course, for this to be true,

adopt a more general definition of an observable than the value of

a variable at some instant of time, which we can do by considering
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an observable to be the quantity measured in any observation and
to be defined by the way the observation is made, together with the

positions of the various component parts of the observing apparatus

and the times when they are set working, if necessary. An observable

now need not refer to an instant of time in some frame of reference,

so that there is no conflict with relativity on this account. For the

non-relativistic theory of the present chapter the previous definition

of an observable is adequate.

If we are dealing with a given dynamical system, we shall have
given dynamical variables, whose values at any time are what we
call observables, and we shall require conditions that will determine

the values of these variables at all times when their values at some
particular time are known. These conditions will be the equations

of motion of the system. In classical mechanics they would be suffi-

cient to form the mathematical specification of the dynamical system

under consideration. This is not so, however, in quantum mechanics,

where additional relations are necessary for this purpose, which take

the form of equations connecting the values of the variables at a

particular time, of such a nature that they can replace the com-
mutative law of multiplication of the classical theory. These addi-

tional relations are called quantum conditions. It is only when the

quantum conditions are given as well as the equations of motion that

we know as much about the variables as in the classical theory and,

can consider the dynamical system as mathematically completely

specified. The equations of motion and quantum conditions are very

closely connected with each other, and one cannot make any progress

in solving a problem until they are both known.
Our problem is now to determine the quantum conditions and

equations of motion for any given dynamical system, such as that

formed by given electrons and atomic nuclei interacting. It is known
that classical mechanics gives an accurate description of dynamical

systems under certain limiting conditions, e.g. when the masses are

large. One would therefore expect to be able to obtain a theory of

these systems when the limiting conditions do not hold by making

some natural generalizations in the classical equations of motion and

choosing quantum conditions that form natural generalizations of

the classical conditions that all the variables commute. It will be

found that one can in this way obtain a quantum theory of individual

dynamical systems analogous to the classical theory. This quantum
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theory will not, however, include all the Bysteins with wliieh one has t cj

deal, but only a large and important class of them, thei‘t‘ Ixang sysitons

in the quantum theory which have no classical analogmss (r.f/. t hat, con -

sisting of a photon interacting with an atom, wliicli will be t.reat<*d in

Chapter XII), for the treatment of which we must in each eas<‘ ehoosc

special quantum conditions and equations of motion, eitlier by me^nns

of special theoretical considerations or to fit exi)eritntmtal facts.

§ 32. Poisson Brackets
The classical equations of motion which we have: to gejH‘rali'zt‘ nuiy

be written in the form

= ,y = (1)
(it

'' dpy. ‘ ^

where the g’s and ;/)’s are a set of generalized co-ordinates and t hctr

canonically conjugate momenta and H is the Hainiltonian, which is

a given function of the ^/’s and p’s for a given dynamit'al syshnn and

is equal to the energy when it does not involve tlu‘ tim<* (wplieitly.

These equations of motion involve partial ditT<n*ential ctH'dicicnts.

which in general have no meaning for dyna.mi(*al variables in tlu'

quantum theory. We get over this difficidty by obs<‘rving that (hr

equations of motion (
1 ), and also all other important equations (tf general

classical dynamics, can be written in aform in which they in rot re partial

differential coefficients only throwjh Poisson Pn/rhet ej'/>rcssions\ nml

that, as we shall now find, these bracket (‘X|)rcssions hav(» tluar

analogues in the quantum theory. Any two variabUss and >/
have

a Poisson Bracket (abridged to P. B.), denotcMl by |^, jj] an<l (h*}inetl

in the classical theory by

If ,,-i
V iii iiZ __ i!£ iliLl

(2 )

These P. B.’s owe their importance to the fa.<*.t that. tlu‘y remain

invariant under a contact transformation {i.e. a. transformat ion to

a new set of canonical variables p,,.*, such that fh<‘ foi’in <»f the

equations of motion (1) remains unaltered), whic:h ih'suHs in t h(‘ <M|ua

tions of motion being expressible in terms of P. lb's. Wc have in fact

— LtZrJ ifV ‘ h
and more generally, for any variable i,

di , ,

di . 1 f
a//

(3)

iL El

.£i

<dr\

(4)
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To find the quantum analogues of these P. B/s we shall note some
of their general properties and try to choose the quantum P. B.’s sc

that they shall have the same properties. The following relations

follow at once from the definition (2).

^,^1= (5)

[^, c] = 0, (6)
where c is a number.

K>’?1+ ’72] = K>'>?i]+ K>'>)2]

drj

^Pr
= [In '^]l2-l-li [l2> Vh

[l» V1V2 ]
== [I. ^1] '>?2+ '>?l [I, ^2]-

Also the identity

[f. h, il]+Lv. SYi+[L [f. vB = 0 (9)

is easily verified. Equations
(
7 ) express that the P. B. [^, 97] involves

^ and 7
]
linearly, while equations (8) correspond to the ordinary rules

for differentiating a product.

We can define the quantum P.B. so that it also has all these

properties, provided the order of the factors and ^2 first of

equations (8) is preserved throughout the equation, as in the way we
have here written it, and similarly for the 77 and in the second of

equations (8). These conditions are sufficient to determine the form
of the quantum P.B. uniquely, as may be seen from the following

argument. We can evaluate the P.B. V1V2I ^wo different

ways, since we can use either of the two formulas (8) first, thus,

[li I2. ViV2\ = [In ^i'72]l2+li[l2 . V1V2]

= {[In "^i] ^2+'7i [In '72]} l2+ li{[l2. 7i] 72 “l-7i [I2. 72]}

== [In 7i] 72I2+71 [li’ 72] I2+ I1 [l2» 7i] 72-hli 7 i [l2> 72]

and ^2> 7i 72! = [li l2^ 7iJ 72+7i [li I2. 72J

= [In 7 i] 12 72+11 [l2 > 7 i] 72+ 7 i [In 72] I2+71I1 [12 . 72]-

Equating these two results, we obtain

[In 7 i] (I272— 72I2) = (Ii 7i~7ili) [I2. 72]*

Since this condition holds with and rj^^ quite independent of ^2,

we must have

I272—72I2 [I2. 72] J
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where ^ must not depend on and or ^2 V2 also must
commute with. —

171 ^1), so that it must be a number. We want
the P.B. of two real variables to be real, as in the classical theory,

which requires that h shall be a real number when introduced, as

here, with the coefficient i. We are thus led to the following general

formula for the quantum P.B. [^, r(\ of any two variables i and 77 ,

I77— 77I = [^, 77], (10)

in which ^ is a new universal constant having the dimensions of

action. In order that the theory may agree with experiment, we must
take h equal to A/27r, where h is the universal constant that was
introduced by Planck. It is easily verified that the quantum P.B.
defined by (10) satisfies all the conditions

(
5 ), (

6 ), (7), (
8 ), and (9).

These conditions often provide a more convenient way of actually

evaluating a complicated P. B., by enabling one to express it in terms
of simpler P.B.’s whose values may be known, than that afforded

by a direct application of ( 10 ).

§ 33. Equations of Motion and Quantum Conditions obtained
from Analogy with the Classical Theory

The assumption that the P.B. defined by ( 10 ) is the analogue of the
classical one enables us to take over the classical equations of motion
(3) and (4) into the quantum theory and also any other classical

equations expressible in terms of P.B.’s. Further, the assumption
that the P. B.’s of the p’s and g^’s, which P. B.’s in the classical theory
have the values

\-9.ri ^s\ — 9 \.Pri Ps\ — 9

^rs ?

have these same values in the quantum theory, provides us with
quantum conditions, since we can now, with the help of ( 5 ), (6 ), (

7 ),

(8 ), evaluate the P.B. [|, 77] of any two analytic functions ^ and 77 of
the p s and g’s and thus obtain, by using (19), an equation for ^77

—
77^

capable of replacing the classical condition that —
77^ = 0 , We

have thus solved the problem of obtaining equations of motion and
quantum conditions forming a natural generalization of the classical
theory. The classical theory is, in fact, given by the limiting case
h — 0 of the quantum theory.

The quantum conditions and equations of motion may be written
without the use of P.B.’s, if we eliminate the P.B.’s with the help
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of their defining equation in the quantum theory, equation (10). "V

obtain in this way for the quantum conditions (11)

^ !Pr^s ^sPr ^

^rPs Ps^r
and for the equation of motion (4)

mi = m-Hi, (13 )

The condition for a variable £ to be constant is that it shall commute
with the Hamiltonian H.
The notion of P. B.’s is more fundamental in the quantum theory

than in the classical theory, as is shown by the fact that one can

define a P.B. in the quantum theory without reference to a set of

canonical variables, which is not possible in the classical theory. Por
this same reason the notion of a set of canonical variables is less

important in the quantum theory than in the classical theory. The
notion of canonical variables is in the classical theory a dynamical

notion, but in the quantum theory it is merely an algebraic notion,

as the conditions defining when variables are canonical are then

expressible by algebraic equations (11) or (12). Equations (11) may
be considered as defining canonical variables also in the classical

theory, but they then have no meaning unless the 'Pj. are functions

of another set of variables g,*, which are given to be canonical,

as otherwise the P, B.’s are undefined. A transformation from one

set of canonical variables to another is called in the classical theory

a contact transformation, and this name may conveniently be taken

over into the quantum theory. The transformations discussed in § 19

evidently do transform one set of canonical variables into another,

since, as shown in § 19, they leave algebraic relations between the

variables unaltered and the conditions for variables to be canonical

ill the quantum theory are algebraic.

It should be understood that the symbols q, p, &c-, in the equations

we arc now dealing with really denote the values q{t), p{t), &c., of

the variables at some particular time t that is not specifically men-
tioned, so that our equations are equations between observables

depending on a parameter 1. The i in (4) and (13), defined as the

rate of change of the observable ^{t) with respect to the parameter t,

is also an observable. For observables i{i), 7]{t) depending on a para-

meter t, we have the laws

d

dt i^ + v)- ‘I
S

d

dV^

d

dl

drj

dt

di

3595 O
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which are consistent with the general quantum equation of motion

(4) or (13), on account of their analogy with (7) and (8) respectively.

It is legitimate for us to assume the quantum conditions (II) or

(12) only for one particular time, and we must then deduce that they

hold at all times from the equations of motion. We can do this by
observing that, if equations (11) or (12) hold at one particular time

t, then the time-rate of change of their left-hand sides must vanish

at time so that they will hold also at time or alternatively

by observing that, from the general equation of motion (13), the values

of the _p’s and g’s at time t-{-dt are connected with their values at

time t by an infinitesimal contact transformation of the type (29) of

§ 19. In order that we may be able to consider the commutative law

of multiplication of the classical theory as completely replaced by
our quantum equations, it is necessary that we should be able to

evaluate expressions of the form |^(^i)^(^2 )—^(^2)^(h)* This we can do

by using the equations of motion to express |(^i) and 'q{t^ in terms

of the jp’s and g’s at some one time t and then applying the quantum
conditions (12).

The equation of motion (4) or (13) must be generalized when ^

involves the time explicitly as well as through the p’s and g’s. The
classical generalization of (4) for this case is

i=% (
14 )

which may be taken over directly into the quantum theory. The
generalization of (13) is thus

mi = + m-Hi. (is)

The Hamiltonian H is a constant when and only when it does not

involve the time explicitly. The equations of motion are not affected

by the addition to the Hamiltonian of an arbitrary numerical con-

stant, even one that varies with the time.

We are now in a position to be able to work out all that we require

for any dynamical system when this system is specified by a Hamil-
tonian function H, given in terms of the g'’s and p’s and perhaps also

containing t explicitly. It should be observed that the order of the

factors of products in the expression for H may be important, since

our variables do not now all commute, so that there is a greater

variety of Hamiltonians in the quantum theory than in the classical

theory. Thus for a given Hamiltonian of the classical theory there
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is not in general a unique corresponding Hamiltonian of the quantum
theory, so that when one is given a dynamical system in the classical

theory it is in general meaningless to talk about the same system in

the quantum theory. There are, however, exceptions to this, it being

possible in many cases to use the same language for describing

djmamical systems in the quantum theory as in the classical

theory without practical ambiguity. For example, one can describe a

dynamical system as that of a particle of mass m moving in a field of

force derivable from a potential function F. The Hamiltonian for

this system in the classical theory would be, when expressed in

Cartesian co-ordinates,

==
2^ {pj" -{-V{xyz).

One can without ambiguity say that the same system in the quantum
theory is that having this same Hamiltonian, since this Hamiltonian

does not contain any product of the type xp^ for which the order of

the factors is important. It should be remarked that this freedom

from ambiguity in the passage from a classical Hamiltonian to a

quantum one can be maintained only provided one uses always Car-

tesian co-ordinates, as in general different quantum Hamiltonians

would be obtained, differing from one another by terms containing

h as a factor, if one were to take over the classical Hamiltonian

expressed in different kinds of curvilinear co-ordinates.

§ 34. Schrodinger ’s Form for the Quantum Conditions
In this section and the following one some of the more important

consequences of the quantum conditions (12) will be obtained. We
shall here be concerned exclusively with the values of the variables

cp p at one particular time, which will not be specifically mentioned.

Equation (26) of Cihapter II is, apart from the numerical factor H,

the same as the quantum condition connecting any co-ordinate

with its conjugate momentum p,^. Thus we can take over the con-

sequences of that equation and apply them to our present and

with insertion of the factor h where necessary. Equation (27) of

(lhapter II gives us in this way

fPr~Prf=^iM'ld^r> (16 )

where / is any function of q^ expressible as a power series. This

equation evidently holds also when / is a function of the other q’s as
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well as provided the total differential coefficient is replaced by a
partial one. Again, from the argument at the end of § 19, we can
infer that each and must have as eigenvalues all numbers from
—GO to oo. This would actually be the case, for instance, if they
were Cartesian co-ordinates and momenta of particles.

It will now he shown that, ignoring a certain indefiniteness, one
can give a meaning to the operator djdq^ applied to a -symbol, or
one can differentiate a ijj with resjpect to an observable g,.. The simplest
way of treating this problem is to suppose the ifj to be represented
in a representation in which, amongst others, the observable g^ is

diagonal. The representative (g^'D of ip will be a function of the
variable g/, whose domain extends from—oo to oo, and can therefore
be differentiated partially with respect to g^', giving another function

^{9.r\)l^9.r of
9.r <Iofin.ed for this same domain —oo to oo. This new

function wdll represent a ?/f-symbol, which we define to be dipldq^. It
would, of course, be strictly correct to say that one can give a
meaning to the operator djdq^ applied to a j/f-symbol only provided
for each ip there is one unique dipjdq^, i.e. provided the above procedure
for obtaining dpjdq^ gives a result independent of which of all the
possible representations in which g^ is diagonal we use, and this is

not the case. There is thus an indefiniteness in the meaning of tlie

operator S/Sg^ apphed to a i/r-symbol, the extent of which we shall
now investigate.

Let us take first the case of a system of one degree of freedom, so
that there is only one co-ordinate g and only one variable g' in the
representative (g'|) of a ip. By differentiating this representative we
obtain d(q'\)/dq', the representative of a possible dipjdq, say {dpldq)^^.
Now in the present one-dimensional case the most general canonical
transformation we can make such that g remains diagonal is tliat
which involves the multiplying of the representative of any i/r-syml)ol
by an arbitrary phase factor. Thus the new representative of i// will
be of the form

(g'D* = e"^'(g1), (17)

where F' is short for F{q'), a real function of g'. If we use this new
representation to define dpjdq, we obtain a new dpjdq, say {dpjdq)^^,
whose representative in the new representation is

dq7(g1)
oiF

d rl TP'
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The representative of {dijjjdq)^ in the original representation is there-

fore

and hence

WA “W ,

.dF
(18 )

This is an equation giving the general connexion between two
{dipIdqYs. It shows that the indefiniteness in the operator d/dq con-
sists in the possible addition of an arbitrary pure imaginary function
of q.

In the ?2.-dimensional case the general canonical transformation
which leaves a single q, q^ say, diagonal is much more general than
a mere change of phase and thus the indefiniteness in the operator
djdq^ is much greater than in the one-dimensional case. Whenever
we use this operator, however, we shall deal not with a single ^j^q^

alone, but with the whole set djdqi, QJQq2, > • • together, which
will make only those meanings for the operators useful that arise

from a representation in which all the g’s are simultaneously diagonal.

The arbitrariness in this representation is then again merely that of

the phase, like
(
17 ), and leads again to the form (

18
) for the con-

nexion between two (^«/f/Sg',.)’s, namely

b
( 19 )

where F is now an arbitrary real function of all the g’s. Thus the

indefiniteness in the operators djdq^. now consists in the possible addi-

tion to each simultaneously of a function of the g’s, of the form
idFjdq.^. for the r-th. This small amount of indefiniteness has, how-
ever, been attained only by our considering each djdq^ as not specified

by the observable q.,. alone, but by q^ as one of a given complete set

of commuting observables q^, ^2 • • • ^n'

The operators applied to ^-symbols are linear oj)erators that

can be a])plied to an arbitrary ifj and are thus ju,^t ordinary observables

.

We shall call djdq,^., considered as an observable, The repre-

sentative of 77,. in the ^-representation used for defining dKfjjdq,^. is

('/'k.l'/")
== — SC'/)— 7';) 8 (73

—
72 ) • S(7r-1—7r-l) 8'(7'r— 7r)

s(7;+i~7';+,)---s(7:-?;), (20 )

which is similar to expression (
49

) of Ohapter IV. The matrix

rei)resenting tt,. is thus antisymmetrical, showing, according to equa-
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tion (23) of § 21, that is a pure imaginary observable. The form

of (20) shows also that when is multiplied into a <^-symhol, the

result is

(21 )

in which d^fdq^ is defined through its ^-representative in the same

way as dipjdq^ was.

The commutahility relations connecting the tt’s with each other

and with the q’s will now he obtained. For this purpose we use the

fact, which is easily verified, that the operators djdq.^ applied to «/»-

symbols obey the same laws as when applied to ordinary functions.

Thus

dq^dqs“ dq^dq^

or TT^TTstlf — TTgrr^lp,

and hence 'rr^rr^
—

~

(22)

Again

or

and hence

More generally, if

d dip _

qtr'^s ^rs’

f is any differentiable function of the g’s,

(23)

or

and hence

3 W)=f^ +^
''dqs

'

/tt^—7Tg/= —dfjdqs- (24)

These relations (22), (23), (24) could have been obtained alternatively"^

directly from the representatives (20), with the help of proj)erties of

the S function given in § 22.

The relations (22), (23) for the tt’s are, apart from a numerical

factor — ifi, just the same as the quantum conditions (12) for the p’s.

Thus the observables — satisfy the same commutahility relations

with each other and with the g’s as do the p^.. Equation (24) now corre-

sponds to (16), with the difference that (24) has been shown to 1)6

vahd for any differentiable function /, not merely for one expressible

as a power series. There exist many sets of observables rr^, owing to

the indefiniteness in djdq,. discussed above, but each such set must
satisfy (22) and (23) and thus give rise to a set of observables -—iTiTr^.

with the same commutahility properties as the p^’s. Any one of these
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sets, TTy, is connected with any other, according to equation (19),

by the relation

rr, = 7r,^-\-idFldq,.
(25 )

It will now be shown that there exists one set of rn-fs such that — ihir^

is just equal to .

If we take any set of 77^’s, say, then from (23) and ( 12 ),

must commute with each and must therefore be a function of the

only, i.e,

= fs{g)- (26)

Each /g must be a real function of the g’s, since both and — ihrr^^

are real observables. Again, from ( 12 )
and (

22 ), we obtain

^ = PrPs—PsPr
= (
— ihrr^^-jrfr) (—^^'^sa+/s)— (

—
ih fg -f-fy>7Tg^ "^sa ir t

s

>

“^safr fr'^sa "^rafs Ss'^ra'
With the help of (24) we now find

which shows that the functions are all of the form

fr = dGJdq^,

where G is a function of the g’s indei^endent of r. Thus (26) becomes

•7.
, rl I

Pr 1 I hdqj‘

We can introduce a new set of 7t,,’s according to equation (25) taking

F equal to Gfii, since F is an arbitrary real function of the g’s and

G is real. For these new 7r,.’s we shall then have

qij. = —ih'TT.j.. (27 )

Equation (27), which was discovered by Sohrodinger, is a very

important one in applications of quantum mechanics. It is a con-

sequence only of the quantum conditions
(
12

)
and may be regarded

a.s a new form in which these quantum conditions may be ex})ressed.

It shows that we can take a ixvpresentation in which the g’s are

diagonal and in which c'ach oI)serva:ble q)^., when multi|)lied into a

i/r-symbol, is re})i‘esentecl by the o|)erator --ihd/dgl. operating on the

representative (g']) of this ?/;-aynil)ol. When q)^ is multiplied towards

the left into a ^-symbol, it is then represented by the operator ihdjdgj

operating on the representative {\q') of this ^-symbol. If f{qg,q>r) is
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any function of the q’s and p’s, expressible as a power series in the

p’s, then it is equivalent to

f{qs,—ifi-rrr), (28 )

obtained from Si^s^Pr) ^7 substituting — ifiTTy for each p,,. This is

to be understood as meaning that when / is multiplied into a j/r-

symbol, its representative is the operator op^srating

on the representative {q'\) of this i/r-symbol, and when multiplied into

a (^-symbol, its representative is the operator /(^g, ifididq'j.) operating

on the representative (jg[') of this <^-symbob where / is the function

obtained from / by reversing the order of all the factors in each term.

The equation for determining the eigenvalues f' of / is thus

(29 )

which is an ordinary partial differential equation for the unknown
function (^'|) and unknown number/'. When / is the Hamiltonian

or energy of the system (assumed not to involve the time explicitly),

this becomes Schrodinger^s equationfor the deterynination of the possible

numerical values for the energy.

Equation (27) shows up the meaning of the indeterminacy in a

representation when only the observables that are to be diagonal in

it are specified. Corresponding to each representation in which the

^’s are diagonal there exists one set of observables conjugate to the g’s

\i.e. satisfying the same conditions as the p’s in (12)], whose repre-

sentatives are of the specially simple form — ihdjQq'^ [when
multiphed into a representative

(g^'l)
of a i/f-symbol]. If we now

take one particular set of observables conjugate to the g’s and require

that the representatives of these shall be of the specially simple form
—ihdjdq'j., the representation is then completely determined, e.xcept

for a trivial phase factor e^r, where y is independent of the ^’s, since

the function F in (26) is completely determined by the condition that
— ihir^ must equal p^, except for an arbitrary constant. The indeter-

minacy in a representation when only the diagonal observablciS are

specified is of the same nature, although it cannot be discussed in

the same way, when any of these diagonal observables has no
canonical conjugate, as is the case, for instance, when its eigenvalues
do not extend from —co to oo.

Erom equations (27) and (24) we see that (16) holds also for func-
tions / of the 2 ’s that are not expressible as power series.
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§ 35. The Transformation Function
- The result (27) which we deduced with reference to the g-repre-

sentatives of ifj- or <
5
{>-symhols must be apphcable also to the trans-

formation functions connectingtwo representations of which one is the

^-representation, since these transformation functions are nothing but
the representatives in either of the representations of the fundamental
i/f’s and <

5
&’s of the other. For instance the transformation function

(g'|a') is the ^-representative of ip{cx'). Hence from (27) the repre-

sentative oi Pj.zfj{oc') is — ihd{q'\(y.')ldq'y. This representative, equal to

j i^'\PrW") ^9." may be written {q'\Py\oi) in the notation of mixed
representations of § 27, so that we have

to'brla )
= —i^^{9'W)ldq'^. (30)

Similarly, if f{qs,Pr) function of the g’s and p’s expressible as

a power series in the p’s, we see from the result (28) that

(a'l/l“') =/(«;.-«3|)(2'1«')- (31)

Again, the transformation function {oc'\q') is the g-representative of

^(a'), so that, remembering (21), we obtain from the result (27)

(o^'lPrW') = ih8{a'\q')ldq; (32)

and from the result (28)

{oc'\f\q') =f(ql„in^^^{oc'\q'), (33)

We shall now aj^ply (30) to calculate the transformation function

{q'\‘p') connecting a co-ordinate q with its conjugate momentum p.

We have
{q'\p\p') = --ifi8{q'\p')ldq'.

But from equations (22) of Chaj)ter V
{9'\v\'P') = {<1'\P')P'‘

Hence — ‘Uid{q'
\
p')ldq' = p'{q'\p')‘

This is a differential equation for the unknown function (g'lp') of q'

.

Its general solution is

iq'lp') =
where a' is an arl)itrary function of p'.

We can determine the modulus of a' by using the normalizing

condition

1

' rrj

I
-- CO

3595 r



106 EQUATIONS OF MOTION AND QUANTUM CONDITIONS §36

This gives, when we put

the equation
iv'W) = WW) =

e-i<i'(p'-p")irt dq' = h{'p'—p"),
— 00

where a" is the value of a' when p" is substituted for the p' in it.

By carrying out the integration with respect to q' we obtain

iK

V —P

p —

p

" L X=

i, fsingCfi'—

— 00

q = oo

Integrating each side with respect to p", we now get

sin

Thus

> P —P
= 2^[7r]«=“’ = 27Tn = h,

a'= h-^e^y\

where y' is some real function of p', and hence

{q'\p') =
By suitably choosing the arbitrary phase in the j>-rej)resentation

we can remove the phase factor cV, which will leave us with

{q'\p') = (34)

There is no arbitrary phase in the g-representation, since this phase

is fixed when we use equation (27) or (30).

Our result (34) shows that the g)- and g-representatives of a i/f-symbol

are given in terms of one another by the relations

(2'|) = fe-4|

e-Vp'l'‘dq'(q'\)
— oo

ea'p'lft dp'{p'\).
— CO

(35)

Thus either of them is given by the components in the Fourier
resolution of the other. The transformation function connecting the

^ ^25 * ' • 9.n> "'vhh their n conjugate p’s, p^, p^, . .
. p^, is given by

simple multiplication,

9.2 • • • 9'nWl P2 • • • K) = {9'l\p'l) {92\P2) • • • ia'nWn)

= h-^i^ 6^(3513i+p^
a '+ . .

. (35)
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§ 36. The Space-displacement Operator
In § 34 we saw how to give a meaning to the operator djdq^ applied

to a ^-symbol. For this purpose we had to make use of a representa-

tion in which is diagonal. There are, however, certain cases in

which one can give a meaning to this operator independently of any
representation, so that this meaning becomes of more fundamental
importance. These are the cases in which is the value {x say) at

a particular time of one of the Cartesian co-ordinates of the particle

when the system consists of a single particle, or of the centre of

gravity of the whole system in the general case. The operator djdx

applied to a state is then connected with the operator of displace-

ment of the state in the direction of the aj-axis, as will now be

shown.

Let denote any state of the system, arising when the system is

prepared in a certain way. We now introduce that state which
is the same as except for being displaced through a distance Sx

(a number) in the direction of the aj-axis at the time t. To define

e/fg rigorously, we must suppose all the apparatus used in the prepara-

tion of and all the external forces acting on the system up to time

t to be displaced through this distance 8x, the external forces after

time t being unchanged. The state of the system after time t, which
state is completely defined in this way, will then be We can now
form the difference i/r.^— ip^ and divide by 8x and proceed to the limit

Sx —> 0. The result of this procedure will be a j/f-symbol which depends

in some linear way on our initial ^-symbol ip^. Thus we shall have

lim {ip^—ip^)ISx =
where is a linear operator, i.e. where

for arbitrary ip^ and ip.^. Our displacement j)roceduro thus enables xis

to define a dinplacenumt operator d^., which, being a linear operator

that can be multiplied into any e/f-symbol, can be regarded as an
observable.

The displacement operator d^. is not comj)letely defined owing to

the fact that the i/z-symbol tp^ is undefined to the extent of an

arbitrary numerical factor*. If we make the assum|)tion that shall

have the same ‘length’ as ip^, i.e. that

then this arbitrary factor will be of the form e'V, where y is a real
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number. Thus if xjj^ is any alternative xjj^, we shall have ~
Our new displacement operator will now be given by

Sx—> 0

= lim
Saj—> 0

^2—^1
I

1
, 1

So;
“ + Sa;

J

where a is a real number, equal to the limit (assumed to exist) of

y/Bx. Thus

so that the indefiniteness in our displacement operator consists of

merely an additive arbitrary pure imaginary number.
The series of operations by which, given any i/r-symbol ip, we defined

the «/f-symbol d^p may be applied also to any <
5
{>-symbol p and will

then give us the <^-symbol When d^ is regarded as an observable
it can be multiplied into a </»-symbol to give a product pd^. The con-
nexion between d^p and pd^ will now be obtained. Any product of

the form pp is a number which must remain unchanged when both
the p and p are displaced through the distance 8x, and hence

Since d^ is of the nature of a differentiation, we can use the ordinary
law for the difierential coefficient of a product, which gives us

(d^p)p-j-P(d^P) — 0.

When we consider as an observable, we have

= {pdx)P-

Hence

Since this is true for arbitrary p, we obtain

pd^ = —d^p,
which is the required connexion. This result is analogous to (21). It
shows us that the conjugate imaginary symbol to d.^.p^., which is, of
course, just d^p^, is equal to —Pr^x’ hence allows us to infer that
cZ^ is a pure imaginary observable, like the of (21).
We shallnow obtain the connexion between our new operator d^ and

the operator djdx defined according to § 34. We take a I’epresenta-
tion in which x is diagonal. We suppose further that the jjhase of
this representation is independent of x, so that when a ?/f-symbol is
displaced in the direction of the iu-axis, its representative (.'r'[) is
merely displaced an equal distance through the domain of the vari-
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able x'

.

(If the phase were arbitrary, then when the ^-symbol is

displaced its representative would be changed in some more com-
plicated way.) The representatives (£c'|l) and {x'\2) of and
now connected by the relation

(x'\2) = {x'— Sa;|l).

Thus the representative of will be

Sccll)— (aj'jl)

and hence

lim
8-^-> 0 8x

— (37)

Equation (37) holds, of course, only for one of the possible operators

d/dx. The others will differ from this one in accordance with equa-

tion (18). It will now be shown that the one for which (37) holds is

the same as the one which, considered as an observable rr^, satisfies

(27) or

!Px

being the momentum conjugate to x. This will mean that, with
considered as an observable,

p, = iM,. (38)

We prove this by observing that and ihd^j. satisfy the same corn-

mutability relations. When the ?/f-symbol xip is displaced through the

distance 8x the result must be {x— 8x)ip2,, in which x has been changed
into X— 8x, since the displacement of apparatus required for the

definition of the displaced j/r-symbol causes apparatus that measures
the observable x to become apparatus that measures x— S:r. Thus
from the definition of d^

d^xip^ = lim {(a;

—

8x)ip2,—xip-^jhx
8a: -> 0

= xd,^xp^--xp^.

Hence d.j.x—xd^. = — 1. (39)

In the same way it may be shown that d^ commutes with y, s, p,,.,

Pyy Pz’ fact with every dynamical variable (at time t)

indej^endent of x. Thusp,.— commutes with everything and must
be a number. We may take this number to be zero, on account of

the arbitrary additive number arising in the definition of d^, and thus

obtain (38).

Equation (38), which connects our disi:>lacenient operator d^ with
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the momentum ig an alternative way of expressing the quantum

centre of gravity
ot the whole system, and is perhaps the most fundamental of all ways
o expressing them, showing most clearly the underlying physical
assumption. This equation (38) is quite a plausible assumption for
one to make for one’s quantum conditions, apart from the fact that
it IS derivable from equations (12), which were set up from analogy
with the classical theory, on account of its simplicity and generality
an the fact that it leads at once to the law of the conservation of
momentum. When there are no external forces acting on the system,
we see from the definition of that it does not depend on the time t.

quation (38) then shows that the momentum does not depend on
t and is therefore constant.

§37. The Time-displacement Operator.
Corresponding to the space-displacement operator dj, of the preceding
section, wenowintroduce an analogous time-displacement operator d^,
defined as follows. If ifj^ is any ^-symbol, we form the time-displaced
ip symbol supposing all the apparatus used in preparing to
e set in motion a time ht later and all varying external forces acting
on the system up to time t to he retarded a time Si. The state of the
system after this time i will then be our ip^. We now take the limit
of (?//2 ^i)/S^ and define it to be d^tp^. We can consider to be an
o servable and, as in the case of d^, can show that it is a ]>ure
imaginary observable and that it is completely defined except for an
arbitrary

,
pure imaginary, additive numerical constant.

3y means of this d^. we shall deduce the equations of motion of the
system. In this way we shall establish the form of these equations
without anywhere making use of classical analogues. We introduce
the real observable H defined by

-ifid4 H.
mt.

Hip ~ —iHd^ip (41)
for arbitrary If we now take any observable ^ that is the value
at time t of some dynamical variable and apply (41) to the i/i-svinbol

-we obtain

We can evaluate the right-hand side here by the method used for
derivmg (39), or more directly by making use of the fact that the
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ordinary law for the differentiation of a product applies to the

operator so that

It is now easily seen that is just the ordinary time differential

coefficient (This is to be contrasted with the corresponding result

for the d^ operator, namely, d^^ — —d^dx.) We thus obtain

which gives —JS^.

This is of the same form as (13), with for Hamiltonian just the H
defined in terms of the time-displacement operator d^ by (40).

The above argument is quite general and shows that the equations

of motion for any dynamical system are expressible in terms of a Hamil-
tonian in the form (13), whether this system is one that has an ana-
logue in the classical theory and is describable in terms of canonical

co-ordinates and momenta or not. The general dynamical system in

quantum mechanics is thus one in which the dynamical variables

satisfy arbitrary commutability relations, and there is a Hamiltonian
which is an arbitrary real function of them. More generally still, we
may have a system in which the Hamiltonian cannot be expressed
as an analytic function of dynamical variables and can be specified

only through its requnsentative in some representation, which repre-

sentative may be an arbitrary Hermitian matrix. An example of

a system of this more general kind is i)rovided by the problem, con-

sidered in Chapter XII, of the interaction of a photon with an atom.
Corresponding to equation (37) we can prove the result

(42 )

We must first give a meaning to the operator djdt applied to a 0-

symbol, which we can do with the help of a representation in which
a complete set of commuting observables diagonal,

which observables must be the values at time t of a set of dynamical
variables q^, (which need not necessarily have conjugate
momenta pg? - '-'Pn)- '^^fhe representative of any 0-symbol 0 will

now be a function of the n variables
q\f^, q[^f , .. . the form of this

function depending in general on i. dlius we can regard this repre-

sentative as a function of the 9^4"l variables ... q'^^, t, and. as

such can differentiate it partially with lespect to t and define the

resulting function to be the representative of dipjdt. We get in this
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way a general definition of the operator djdt in which there is, of

course, a considerable amount of indefiniteness, owing not only to

the arbitrary phases of the representation but also to the fact that

we can take different sets of g’s to be diagonal and will then in general

get different results. We are interested, however, in only one of the

operators djdt, this being the one that is given when the phases of

the representation do not depend explicitly oxit, so that when a time

displacement Si is applied to a state, the g^.^.g^-representative of the

displaced state is the same function of its variables that the

^^-representative of the undisplaced state is of its variables q\. Thus
to obtain the g^-representative of the displaced state we must sub-

stitute t— Si for i in the g^-representative of the undisplaced state,

considered as a function of the n-\-\ variables
q'l, q2 , • • • q^ There

is now complete analogy with the ir-displacement case, so that (42)

follows in the same way as (37). The validity of (42) shows that the

operator djdt defined by a representation with phases not explicitly

dependent on i is independent of which set of g’s are diagonal in the

representation. If we have one representation giving a S/Si operator

that satisfies (42), we can obtain another by making any canonical

transformation for which the transformation function does not in-

volve i.

Trom (41) and (42) we obtain

(43 )

This may be regarded as an alternative way of expressing the equa-

tions of motion of the system. Expressed in terms of representatives,

it gives us * ^
= J dq\ (g"|), (44 )

an equation which shows how the representative (<7 )11 )
of a state,

considered as a function of the n-\-l variables q\, q!,, ... q'^, varies

with t. When the g^ have conjugate momenta reduces to the

ordinary differential equation

(45 )

This equation was discovered by Schrodinger and is known as

Schrodinger'*s wave equation. It is very useful in apj^lications of

* The case of continuous cf's, is taken for definiteness, the usual inodificationB in

the notation being required for the discrete case.
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quantum mechanics since its solutions have an immediate physical

interpretation, the square of the modulus of any solution giving the

probability of the g’s having specified values for one particular state

throughout all time. It is called a wave equation because in many
elementary examples, as will be seen in the next chapter, its solutions

are of the form of waves moving through ^-space. For this same
reason the solutions are called wave functions, even also in those

examples where they have no resemblance to waves.

When the Hamiltonian does not involve the time explicitly, the

wave equation in the form (45) or in the more general form (44) will

have solutions that vary periodically with the time, according to

(q'\) = to'l )„ (46)

where TV' is a number and (^jf'Do is independent of t. The equation

that
(g''j)o must satisfy is

W'(q'\)^ = MW)dq''(q"\\

'(q’,-in^(q'\\.

But this is just the equation for determining the eigenvalues of H,
namely, equation (29) with H for/. Thus W' is an eigenvalue of H
or energy-level of the system and ((?'|)o is an eigenfunction of H.

§38. Heisenberg’s Matrices
In the preceding section we dealt with a ^^-representation, defined

by observables qf that are the values at time t of a set of dynamical

variables q. We saw that if the phases of the representation are

suitably chosen, then Schrodinger’s equation holds, in the form (44)

or (45), in which case the representation may conveniently be called

a Schrodinger representation. The condition for the phases is such

that, when a state is given a time-displacement ht, the g^_,.. 3^-repre-

sentative of the dis})laced state is the same function of its variables

Si
^^-representative of the undisplaced state is of its variables

q'^. This condition will hold in an analogous form for observables.

If we take an observable^ which is the value at time i of a dynamical

variable then, the displaced observable will be shall then

have that the g^^.3^-representative of the disjrlaced observable, namely
same function of its variables q't^^t^ 9!t \ht

the ^^-representative of the undisplaced observable, namely {qt\^t\q"t),

is of its variables q'^, q'[. This means simply that the form of the
3596 Q
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function variables q\ is independent of t. More

concisely, one can say that the Schrodinger representative of is

independent of t.

In general, when one wants a representation of observables, the

Schrodinger one would not be a convenient one to take, since it refers

to a definite time t and gives simple representatives only for those

observables referring to the same time t. A convenient representa-

tion would now be one which makes no reference to any time t, so

that observables 7]^^ . .

.

referring to different times t^ - - could

all be represented simultaneously and would all be on the same

footing. For such a representation we should have

Such a representation can easily be obtained when the Hamiltonian

does not involve the time explicitly. In the general case it is not so

easy and is therefore then not very useful.

When H does not involve the time explicitly we can take for the

observables a that are diagonal in our representation a complete set

of commuting dynamical variables that are constants of the motion

.

Then H will commute with the a’s and will be a function of them,

represented by a diagonal matrix

{oc'\H\oc") =
,

H' being written for for brevity. Our representation will now'

be one that is independent of t (provided the phases are independent

of t), so that equation (47) holds. There is now a simple law for the

variation of the matrix elements of with t. From the equation of

motion (13) we obtain

ih{oc'\i\oL'') = (o.'|||a:")^"-H'(c.'l^|a:"),

which, with the help of (47), becomes

Hence (a'|||od") varies with t according to the law

(od'[^lod")o being independent of t. The variation is thus periodic with
the frequency

(49 )

This scheme of matrices, in which the Hamiltonian is diagonal and
the matrix elements all vary with the time according to the law (48),
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was discovered by Heisenberg in 1925 and was historically the first

form of quantum mechanics.

A diagonal element {a.' l^h') does not vary with the time. This

diagonal element is the average value of i for a fundamental state

i/j{a) of the representation. Thus for each fundamental state

the average value of any dynamical variable | is a constant. The
probability of $ having any specified value is therefore also constant,

since this probability is determined by the average value of functions

of Thus each ip{oL') is a stationary state according to the definition

of § 3. The fundamental states of a Heisenberg representation are

stationary states. Any eigenstate of H may be taken as a fundamental
state of a Heisenberg representation and is therefore a stationary

state.

The matrices of Heisenberg’s representation fit in very well with

the ‘ anschaulich ’ forms of quantum theory in existence before quan-
tum mechanics, in particular with Bohr’s theory of the atom. The
fundamental states of the representation are Bohr’s stationary states

(which are really stationary, of course, only so long as one neglects

the interaction of the atom with radiation) and the eigenvalues of

H are Bohr’s energy-levels. It follows that the frequency (49) of

matrix elements referring to two states a.' and a." is that of the

quantum of radiation emitted or absorbed according to Bohr’s theory

when the atom makes a jump from one of these states to the other, as

was assumed by Heisenberg in his first work on quantum mechanics.

There now arises a strong correspondence between the matrix ele-

ments representing any dynamical variable and the T’ourier com-
j)onents of that variable in the classical theory for a multiply-periodic

system. This correspondence led Heisenberg to the assumption that

the rate of spontaneous emission of radiation of a system in the

quantum theory can be obtained from the classical formula if one

substitutes in this formula for the Fourier components of the total

electric displacement of the system the coiTesponding matrix ele-

ments. According to this assumption, a system having an electric

moment D (a vector) will, when in the state ol\ emit radiation of

frequency v = {H'— IT')lh, where H” = H{ot!') is an energy-level, less

than H'

,

of some state a", at the rate

3 ^3 1
(a |D|a

) |
(50)

Also the distribution of this radiation over the different directions
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of emission and its state of polarization for each direction will be the

same as that for a classical electric dipole of moment

(a'lDla:")+(a"lDK).

To interpret this rate of emission of radiant energy according to

Bohr’s theory, we must divide it by the quantum of energy of this

frequency, namely hv, and call it the probability per unit time of

this quantum being spontaneously emitted, with the atomic system

simultaneously dropping to the state a" of lower energy. A justifi-

cation for these assumptions of Heisenberg will be obtained in

Chapter XII, where a quantum treatment of the interaction of an

atomic system with radiation will be given.

By altering the phases in a Heisenberg representation we can pass

to the Schrodinger representation in which the same a’s are diagonal.

Let us see what is the connexion between the phases in the two cases.

In the Schrodinger representation the representative of any state

will satisfy the wave equation

in^[A) = (a"|) =

which can in this case be integrated directly and gives

(a'l) =
where (a'|)o is independent of t. On the other hand, the representative

of a state in the Heisenberg representation will not depend on t, since

the representation and also, of course, the state do not in any way
depend on t. Hence the phases of the Schrodinger representation are
Q-iH’tin relative to those of the Heisenberg representation, a result

which could have been obtained alternatively from a comparison of

(48) with the fact that the Schrodinger representative of is inde-

pendent of t. There is thus a difference between the phases of the

Heisenberg representation, which are totally independent of t, and
those of the Schrodinger representation, which are explicitly inde-

pendent of L The explicit independence of t for the Schrodinger
representation means simply that any matrix in this representation

represents a function of the dynamical variables that does not involve
t explicitly.
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ELEMENTARY APPLICATIONS

§ 39. The Free Particle

In this chapter we shall consider some simple dynamical systems

according to quantum mechanics. The simplest of all systems is that

of a particle in free space. For this system we may take as dynamical

variables the three Cartesian co-ordinates x, y, z and their conjugate

momenta Py, p^. The Hamiltonian in classical mechanics, when

one takes into account the variation of the mass of the particle with

its velocity required by the principle of relativity, is

H = (1)

where m is the rest-mass of the particle and c is the velocity of light,

and the positive square root is taken. This Hamiltonian may be

taken over into the quantum theory when one gives the meaning of

§ 16 to the positive square root, which one can do since the eigen-

values of positive.

The momenta Py, p^ commute with H and are thus constants

of the motion, as in the classical theory. Again, the co-ordinates a;,

y, z vary according to the equations

X = [x, H] = H y
c^p

H
V

tJ 5

JoL
(2 )

the same as in the classical theory. These equations may be verified

in the quantum theory by an application of equation (16) of § 34,

which equation, as remarked at the end of that section, holds also for

functions that are not expressible as power series. The general proof

of this equation, however, required the use of a representation. It

is of interest to notice that we can deduce (2) by working in abstract

symbols and not making any use of representations, in the following

way. We have by a direct application of the quantum conditions

xH^—H^x ^ c-{xpl-~plx) = 2i}ic^p^ (3)

or {xH—Hx)H-\-H{xH-Hx) = 2i}w^p,^. (4)

Now H commutes with p^ and hence from (3)

(xH'^-IPx)H-H{:xI-P-HH) -= 0
,

which gives {xH— Hx)H'^—H-(xH—Hx) = 0.

We must now use the condition that {ni^o‘^-\-p%-\-py-\-p\)^, being
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defined as a square-root function, commutes with everything that

commutes with i.e. H commutes with every-

thing that commutes with H^. We have just seen that commutes
with xH—Hx and hence H must commute with xH—Hx. We can
now infer from (4) that

xH—Hx — iKc^pJH^

which gives the first of the equations (2). We thus have an illustra-

tion of the fact that any result that may be obtained with the helj)

of a representation can also be obtained from the abstract symbols
alone without reference to representations, but that the method with

a representation may be much quicker and more convenient.

The Schrbdinger equation for the Hamiltonian (1) is *

iS (®| ) = c ^ ^j I
(»! ) . (5

)

where the x in (a?|) stands for x, y, and z. We have here on the right-

hand side the square root of an operator involving djdx ... which
square root cannot be expressed as a power series that is valid for

the whole range of eigenvalues of p^., Py, p^, namely —00 to co. To
give a meaning to such a function of an operator we should in general

have to make a canonical transformation to a representation in which
the observable corresponding to this operator is diagonal, when the

meaning would be as given in § 15. Our present example is, however,
sufficiently simple for this not to be necessary. We can write down
solutions of (5) immediately, namely

{x\) = a exp {{p'^x+p'yy-^p'^z— (6)

where Py, p'^, W' are numbers satisfying

W'^ = +p'J+Py+Pz) W' 0

and a is an arbitrary number. The general solution of (5) ca.n be
expressed as a sum or integral of solutions of the form (6).

The state represented by (6) is an eigenstate for the components
of momentum, belonging to the eigenvalues p'^, py, p'^. The corre-

sponding value for the energy is W

.

The representative (6) is, in

fact, of the same form as the transformation function (30) of § 35.

Thus the state of a particle moving in free space with a given
momentum is represented by plane waves of the type (6), the direc-

* The primes are omitted from the variables in the wave fumjtion. This is ixu--
missible when it does not lead to confusion.
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tion of motion of the waves being determined by Py, p'^, the

momentum of the particle. The probability of the particle being

found in any specified volume dxdydz at time t is proportional to

\{x\)\^dxdydz and is thus independent of the position of this volume.
The wave-length A of the waves is given by

A = h.l{pC+l>v+p',> = hjP’, (7)

where P' is the magnitude of the momentum of the particle, and
their frequency v is given by

V = W'lh. (8)

Thus their velocity u is

u = Av= W'lP' (9)

where v is the velocity of the particle.

The fact that the velocity of the waves and the velocity of the

particle both lie in the same direction and are connected by the rela-

tion (9) holds, of course, in all Lorentz frames of reference. It was
this relativity invariance which first led de Broglie, before the dis-

covery of quantum mechanics, to postulate the existence of waves
of the type (6) associated with the motion of a particle, which waves
would control the particle in the same way in which light-waves

control photons. The case of the photon may be obtained from that

of the free particle by taking the rest-mass m equal to zero. The
waves (6) then become just the light-waves associated with the

photon, apart from polarization considerations and the fact that they

involve an imaginary exponential instead of a sine or cosine.

§ 40. Wave Packets
By superposing a number of solutions of the type (6) belonging to

different values of the momentum p' lying in the neighbourhood of

a given value, one can obtain a solution that, at every instant of time,

vanishes (aj^proximately) everywhere outside a certain finite region.

Within this region the waves are a])proxiTnately of a single wave-
length, corresponding to the given value of p'. This solution thus

forms a group of waves or wave packet. The velocity V of such a
wave packet is not equal to the velocity of the waves, but lies in the

same direction and is given by the hydrodynamical formula for group

velocity

V = dv

d(l/A)
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With the help of (7) and (8), this becomes

y _ dW'
dP'

V.

Thus the group velocity is the sarue as the velocity of the particle.

This important result was first obtained by de Broglie. It is capable

of wide generahzations. If we have any dynamical system describable

by a Hamiltonian H{q, p), which is an arbitrary function of canonical

g’s and p’s, then, if it is permissible to treat Planck’s constant h as

small so that terms involving it as a factor may be neglected, the

Schrodinger equation will admit of solutions consisting of wave pachets

whose motions are along the trajectories of the classical theory. The

proof is as follows. The Schrodinger equation is

= (10 )

We express the Schrodinger function (g|) as though it were of the

form of waves, thus

(g|)
=

where A and >8 are real functions of the ^’s, which give the amplitude

and phase respectively. The effect of the operator — ihdidg.,. on (g|)

is now

and that of the operator ihdjdt is

If/ is any function of the operators — ifidjdq^ expressible as a j^ower

series, one finds readily by repeated applications of (11)

—ih A.

Thus (10) becomes, after removal of the factor

The right-hand side, considered as a function of the {dS jdq— ihdl'dqy^
may be expanded by Taylor’s theorem as a power series in h, which
we are supposing to be a small number. The terms in this expansion
are alternately real and pure imaginary. If we neglect all except the
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first two and equate these to the real and pure imaginary parts of

the left-hand side of (12), we obtain

and

dS
dt

dA
dt

4’i)
8H{q, dSfdq) dA

(13 )

(14 )
didSjdq^) dq^ •

Equation (13) is just the Hamilton-Jacobi equation of classical

mechanics. Thus the phase of the Schrodinger wave function is given

by the principal function S of the Hamilton-Jacobi theory when one

counts h as small. Equation (14) is the one that governs the amplitude

A of the wave function. It shows that for any solution S of (13) the

amplitude remains constant along the trajectories given by

_ dH{q, dSjdq)

• dt
(15 )

d{dSldqf)

but is otherwise arbitrary. Thus we can take A to vanish everywhere

except on a certain group of neighbouring trajectories, along each of

which it must have a constant value. We obtain in this way a solu-

tion of the wave equation that at any time vanishes everywhere

outside a certain small region. There is a limit to how small this

region may be, imposed by the approximations we have made. Our
neglect of later terms in the Taylor exx)ansion of the l ight-hand side

of (12) is justified only provided

dq dq

This requires that A shall vary by an appreciable fraction of itself

only through a range of q in which S varies by many times h, i.e. a

range of q consisting of many wave-lengths of the wave function.

Thus our solution of the wave equation that vanishes everywhere

outside a certain small region is of the nature of a wave x)acket. The
motion of this wave packet is given by the trajectories (15), which

are, when one remembers that dSjdq^ is playing the part of p^, just

the trajectories of classical mechanics.

For the system consisting of a free j^article, a wave packet rex^re-

sents a state for which both the x^osition and the momentum have

definite numerical values to a certain limited degree of accuracy.

Such a state is of the kind that usually occurs in xu'actice, particularly

if the x^article has a large mass, since one usually knows roughly both

the position and the momentum of a x^^^'iticle with which one is

3595 U,
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dealing. If hx is the order of magnitude of the size of the wave
packet, then, when one resolves the packet into its Fourier com-
ponents, the wave-lengths of the different components will he dis-

tributed over a range of order

AA = X^ILx.

From (7) this corresponds to a distribution of the momentum of the

particle over a range of order

Ap — hjX^ . AX = h/Ax.
Thus we have

ApAx — h, (16 )

which shows there is a theoretical limit to the accuracy with which
both the position and momentum may have definite numerical values

together. The relation (16) is known as Heisenberg'’s principle of

indeterminacy. It shows how, the more accurately the position of

a particle is known, the greater the indeterminacy in its momentum
and vice versa. One would expect a principle of this tyj)e to hold
simply from the quantum condition

xp—px = ifi.

It should be understood that (16) holds only in the most favourable
case and that the indeterminacies may be much greater than is

implied by this equation. In fact if one takes a wave packet for

which (16) holds at one instant of time, in course of time this packet
will spread and ApAx will increase. For a discussion of this spreading
and for a treatment of the motion of wave packets representing
particles in fields of force, the reader is referred to papers by Kennard
and Darwin.*

Heisenberg’s principle of indeterminacy apphes also to general
dynamical systems describable by means of canonical g^’s and ^^’s.

We have seen that such systems have states represented by wave
packets moving iu g-space. Any such state is one for which both the
g s and the p’s have numerical values to a certain degree of accuracy,
the orders of magnitude of the minimum indeterminacy in a
co-ordinate and Ap^. in the conjugate momentum p^. being con-
nected by

Ap^Aq^ = h.
(17 )

This general relation may be deduced in the same way as (16) from
* Kennard, Zeits.f. Physik, vol. xliv, p. 344; Darwin, Boy. Soc. Proc. A, vol. exvii.
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the connexion between the size of a wave packet and the indeter-

minacy in the wave-length of its waves, or it may be inferred directly

from the quantum condition

^rPr—Pr^r =
The states dealt with in classical mechanics, of a system composed

of massive particles or bodies, are represented by these wave packets

and (17) gives the limit of accuracy of the classical treatment.

§ 41. The Harmonic Oscillator in One Dimension
We shall now consider the problem of the harmonic oscillator in one

dimension. The Hamiltonian for this system in classical mechanics is

H == l/2m. (18)

where m is the mass of the oscillating particle and a> is another

numerical constant, equal to 27t times the frequency. This Hamil-

tonian can be taken over into the quantum theory and must then

be supplemented by the quantum condition

qp—pq — m (19)

to give a completely determinate problem.

The equations of motion are easily verified to be the same as in

the classical theory. We must now determine the eigenvalues of the

Hamiltonian H. This question is the same as that dealt with in § 29,

there being a difference only in the numerical constants, on account

of the H in (19) and the 2m and in (18). The present q is {Kfma>)^

times the q of § 29 and the present p is times the p of § 29,

which results in the present H being times the (p^+S'^) § ^9.

Thus from the result that the {p^-\-q^) of § 29 has the eigenvalues

1, 3, 5 ... ,
we can infer that the present H has the eigenvalues

1^0) ....

These are the possible values for the energy of a harmonic oscillator

in the quantum theory.

We shall now obtain the Heisenberg matrices representing p and

q. These can be obtained readily from equations (34) of § 29. Allow-

ing for the change in the numerical constants and remembering that

the H of § 29 is equal to (2/J//ico— 1), we find

{IF— nio\p\ir) ==

{H'— 7l(Jo\q\ H' )
=== i /(2m) ^o) .{11'— Ifico)

(20)
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wlien the correct time-factors are included. In the classical theory

we have, when we express p and q as Fourier series,

p = cos(aji-f-y) =
q = (2£r/m)^a>-isin(co^-hy) =

This shows up the correspondence between the Fourier components

of the classical theory and the Heisenberg matrix elements. The

classical Fourier components are, of course, equal to these matrix

elements when one neglects H.

If the oscillator carries an electric charge e, its electric moment
will he eq. According to Heisenberg’s assumption, given in § 38, for

the spontaneous emission of radiation, the oscillator will then emit

only radiation of frequency a)/27T since all the matrix elements of

q vanish except those mentioned in (20). This result is the same as

in the classical theory. When the oscillator is in a state of energy

H' = or, as we may say, when it is in its 7i-th quantum
state, its rate of emission of radiation, according to (50) of § 38, will he

4 O)^

3 2ma)^
{H'—inoi)

3mc‘^
^ (21 )

giving a probability 2€^<x)^ .n per unit time of the oscillator

jumping from state n to state n— 1. In the state of lowest energy,

for which n = 0, there is no emission of radiation.

In the classical treatment of periodic and multiply-periodic dynami-

cal systems it is often convenient to make use of action and angle

variables. We can introduce corresponding variables in the quantum
theory. In our present problem of the harmonic oscillator we can
define the action variable J by

J = Hlco—^ri. (22 )

It is a constant of the motion and its eigenvalues are integral

multiples of greater than or equal to zero. Thus its matrix rej)re-

sentative in the Heisenberg representation is

0 0 0 0 0 .

0 ^ 0 0 0 .

0 0 23^ 0 0 .

0 0 0 3^ 0 .

0 0 0 0 4^^ .
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when the rows and columns are arrangedin order of ascending energy-

levels. To define the angle variable we introduce the two matrices

0 0 0 0 0 . . 0 1 0 0 0 . .

1 0 0 0 0 , . 0 0 1 0 0 . .

0 1 0 0 0 . . 0 0 0 1 0 . .

0 0 1 0 0 . . 0 0 0 0 1 . .

0 0 0 1 0 . .

* « •

0 0

«

0 0 0 . .

« • *

in which the non-vanishing elements are just to the left and just to

the right of the principal diagonal respectively, and call the variables

that they represent at time t = 0, and respectively. These

two matrices are conjugate complex, according to the definition of

§ 21, and thus represent conjugate complex observables, in agreement

with what is implied by the notation of and This notation

implies further, however, that the two matrices are the reciprocals

of one another and this is not altogether true. The matrix repre-

senting the product is, in fact, just the unit matrix, but that

representing differs from the unit matrix through having zero

for its first diagonal element. Thus
g-MOg'tw ^ (23 )

The variables e'"’, defined above through their matrix repre-

sentatives, are the best quantum analogues that we can get to the

exponentials of i and —

i

times the angle variable of the classical

theory. They have many properties analogous to those of their

classical counterparts and their only serious defect is that is

not quite equal to unity. Thus, for example, we obtain at once from

the matrices the relations

q24)

which are equivalent to the classical relations

[«'">, ./] . .. ie>»’ J] =
Equations (24), when compared with equation (2S) of Chapter II, are

seen to be consistent with the view that J and w are conjugate

dynamical variables satisfying tlic relation

wJ—Jw~ Hi,

although actually this relation is meaningless since we cannot define

w; itself but only e ' Again, the dynamical variable at an arbitrary
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time t must be represented by a matrix whose elements vary with
t according to the Heisenberg law Since all the matrix
elements vanish except those referring to consecutive energy-levels
for which H'—H" = Hw, every matrix element will vary with the

time according to the law This corresponds to the fact that in

the classical theory w increases linearly with t at the rate a>.

The co-ordinate and momentum q and p can be expressed in terms
of the action and angle variables. The momentum p, for instance,

is, according to (20), represented by the matrix

0 1 0 0 0 . .

1 0 V2 0 0 . .

0 V2 0 Vs 0 . .

0 0 Vs 0 2 . .

0 0 0 2 0 . .

• - • • • •

with disregard of trivial phase factors, and hence

Similarly g = (2ma))~^(

—

We see from these equations that p and g, when expressed in terms
of the action and angle variables, involve them only through the two
combinations and Further, all dynamical variables that

we may have to deal with to obtain any physical result must be
functions of p and g and will therefore, when expressed in terms of

the action and angle variables, involve them only through the two
quantities and Now it is easily verified from the matrix
representatives that these two quantities are respectively equal to

Ji^iw ^ Qiw(j _j_
(26 )and J
^

and that their products in either order are

= J
e-iy>Ji

,
Jieiw = = J+h.

These results hold in spite of the inequality in (23). They show that
whenwe are dealing with dynamical variables of physical importance,
which can involve the action and angle variables only through the
two quantities and we may count and as truly
reciprocal quantities without getting into error. Thus we can freely
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use tke action and angle variables in complete analogy with the

classical theory without getting incorrect physical results.

The wave equation for the harmonic oscillator with Hamiltonian

(18) is

The wave functions representing stationary states will be the periodic

solutions of this equation, for which the operator ifididt is the same

as multiplication by the energy-level H'. They will thus satisfy

H'{q\)
1

2m (27 )

The general solution of this equation has been given by Schrodinger.*

We shall here obtain some of the solutions representing states of

lowest energy for use in the next section.

Equation (27) reduces to

dg^

g2 2n -f- 1

1

+ (4l)
= 0, (28 )

where is the number Jilma) and H' has been put equal to

Equation (28) now becomes

d(f "dq \jCL^

2n-\-

a-
0

or dq^ ^d^dq^a^^

The solution of this equation, when 7i is any non-negative integer,

is a finite power series in q. Eor

^ = 0
,

1
,

2 , 3
,

. .

.

the solutions are easily verified to be

Rq) - 1
, q,

The successive eigenfunctions are thus

(^lo) {q\
l) ==

(g|2) -= (g|3) =- [(f—lqp^)e-^l^^^ . .

.

* Sehrodiiigor, Ann. d. Phys., vol. Ixxix, j)* ^>14 (1926).

(
29 )



128 §42ELEMENTAKY APPLICATIONS
§42. The Harmonic Oscillator in Two Dimensions
Let us now suppose the harmonic oscillator of the preceding section
can vibrate also in a second direction, at right angles to the first, with
the same frequency co/27r. We shall then have a harmonic oscillator
in two d.imensions, whose Hamiltonian is

H (30)

where x and y are the co-ordinates and and Py the conjugate
momenta. The study of this system is of interest as it provides
beautiful examples of the superposition of states and also it can be
applied, to the problem of the polarization of a photon.
The Hamiltonian (30) can be regarded as the sum of the Hamil-

tonians of two separate dynamical systems, namely, the two one-
dimensional harmonic oscillators with the Hamiltonians

^x— l/2m.p|-f- (31)

On account of this fact there is a simple connexion between the
eigenfunctions of the H of (30), representing stationary states of the
whole system, and those of the and Hy of (31), representing
stationary states of the component systems. Let us first consider the
general case of a system whose Hamiltonian H can be regarded as
the sum of the Hamiltonians and Hg of two separate dynamical
systems, i.e.

where all the observables in are different from and commute with
all those in We can now choose a complete set of commuting
observables defining a representation, consisting of some observables

that occur only in and some gg that occur only in i/g- This will
result in the representative of H being of the form

if we tahe the case of continuous q' for definiteness. Now let {q\\J^'\)
and (g'2|J3"2) be eigenfunctions of H-^ and respectively, belonging
to the eigenvalues and so that

jte'ila'ilS'i) <*21 (2x|Hi) =

1
(32122122 ) <kl
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We shall then have from (32)

= Y^'xWxWl) dql (gxl-ffi)(?2|ii'2)+ (3i|fi'l) Jto2l^?2lff2) dq% (ql\H'^)

This shows that the product (g'll-ffi) (g'21^2 ) eigenfunction of

H belonging to the eigenvalue The product of eigenfunctions

of the Hamiltonians of each of the component systems is an eigen^-

function of the Hamiltonian of the whole system, the corresponding
eigenvalue being the sum of those for the components. The physical

meaning of this result is, of course, that when the component systems
are in stationary states, the whole system is also in a stationary state,

whose energy is the sum of those of the components and whose repre-

sentative eigenfunction is the product of those of the components.
Let us apply this general result to our problem of the two-dimen-

sional oscillator. We have already in the preceding section considered
the eigenfunctions of Hamiltonians of the form of H^ and Hy. Let
{x\nf) and {y\ny) be eigenfunctions of Hj. and Hy, labelled by the

quantum numbers n.^. and ny, the corresponding energy-levels being
H'^ ~ {n^-\-^)hco and H'y — respectively. Their product

will then be an eigenfunction of the Hamiltonian H of (30), belonging

to the eigenvalue
H' — H'^~\-Hy =

Thus the eigenvalues of H are integral multiples of hco greater than
zero. Each of these eigenvalues (except the lowest one hoj) belongs

to several eigenfunctions, corresponding to the various possible ways
of choosing and Uy to have a given integer as sum . There are thus
several stationary states with the same energy. A system for which
this is the case is called degenerate.

Let us now examine the eigenfunctions of some of the states of

low energy, using the results (29) for the eigenfunctions for the

one-dimensional oscillator, ffie state of lowest energy fico has the

quantum numbers n^^ 0, riy ^ O and is represented by the eigen-

function

(;rl()) (2/IO) = (33)

There is only one state belonging to this energy-level, which is there-
3595 Q
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fore non-degenerate. The next lowest energy-level 2?ico has two
independent states belonging to it, corresponding to the two sets of

quantum numbers n^~\^ and = 0, == 1. The two
eigenfunctions are

(a;| 1) (yjO) =
{x\ 0) (y| 1) =

We can take any linear combination of these two eigenfunctions and
get another eigenfunction representing another stationary state be-

longing to the same energy-level

Our two-dimensional harmonic oscillator has circular symmetry
about the origininthe xy plane . Hence

,
ifwe take anew set ofrectangu-

lar Cartesian co-ordinates = x cos 6-\-y sin d, y"^ — x sin B—

y

cos 9,

the wave functions in x*, y^ will be of the same form as those in

X, y. The stationary state of energy for which the x^ component
of oscillation is in the one-quantum state and the y^ component in

the zero-quantum state, i.e,. for which = 1, Uy^ = 0, will therefore
be represented by the eigenfunction

But this is equal to

(a;cos0-l-2/sin0)e“(“®+2'*>/2“% (35)

which is a linear combination of the two eigenfunctions (34). Thus
the one-quantum state of linear oscillation in any direction can be
obtained by a superposition of the two one-quantum states of linear
oscillation in the x and y directions respectively.
The essential differences in the nature of this quantum stiper-

position from that of classical superposition for the same dynamical
system should be noted. In the classical theory if we superpose a
state of linear oscillation of given energy in the cr-direction with, one
of linear oscillation of the same energy in the ^/-direction, the resulting
state will be of double the energy, instead of the same energy as in
the^ quantum theory. Again, if this resulting state is one of linear
oscillation, it must be in a direction at 46° to the original oscillations
and cannot be in an arbitrary direction as in the quantum theory.
The example of quantum superposition just discussed is directly

appHcahle to the problem of the polarization of a photon. A photon
of given i^quency moving in a given direction may be regarded as
a atonic electromagnetic oscillation in a one-quantum state. This
oscillation may be resolved into two perpendicular directions, corre-
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sponding to two independent states of linear polarization of the

photon, so it forms a d3rnamical system formally the same as the two-
dimensional oscillator investigated above. The wave functions (34),

(35) may thus represent states of hnear polarization of the photon.

We see that the state of a photon linearly polarized in an arbitrary

direction 6 can be obtained by superposition of the states of polariza-

tion 0 and The relative weights of these two states in the super-

position process are given by the squares of the moduli of the

coefficients of the wave functions (34) in the expression (35) and are

thus as cos^ 6 : sin^ 6, in agreement with the discussion in Chapter I.

We can superpose the two states of linear oscillation represented

by the two eigenfunctions (34) in such a way as to get a state of

circular oscillation in either direction about the origin, corresponding

to a circularly polarized photon. To do this we must take the fol-

lowing linear combinations of the eigenfunctions (34),

{x— (36 )

These two new eigenfunctions will represent states of circular sym-
metry, as is at once apparent from the fact that theyremain invariant,

except for multiplication by a numerical factor, when one makes a
transformation to the co-ordinates x*, y*. We can determine the

direction of rotation for either of these eigenfunctions from a con-

sideration of the angular momentum. We define the angular momen-
tum, as in the classical theory, by xpy— It is represented by
the operator —ifi{xdf8y—ydjdx), which operator, when multiplied

into the first of the eigenfunctions (36), gives the result

ifixi i
{x-^iy)y {x-\-iy)x

This operator is thus equivalent to multiplication by 2^, showing that

the first of the eigenfunctions (36) rej)resents a state for which the

angular momentum has the value fi. The second must now from
symmetry represent a state for which the angular momentum has

the value — Ti. It should be noticed that the states of linear oscillation

represented by the eigenfunctions (34) are not states for which the

angular momentum has the value zero, as it would in the classical

theory, but are states for which there is an even chance of its having
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the value ^ or — H. The state of lowest energy represented by (33)

is one for which the angular momentum has the value zero.

We can deal in the same way with the two-quantum states of

energy 3/^co, of which there are three independent ones, corresponding

to the three sets of quantum numbers = 2, = 0 ;
= 1,

Tiy— 1 ;
n^~ 2. The three eigenfunctions are

(:rll)(2/|l) = 1(37)

(a;|0)(^|2) = {'if
'

—

The two-quantum state of linear oscillation in any direction x* will

be represented by the eigenfunction

(-;gH=2<^2)g-(a:*=+2/§**)/2a«

= {(aj cos 6 -j- 2/ sin 6f—
which is a linear combination of the three eigenfunctions (37). There

are three two-quantum states of circular oscillation, represented by
the eigenfunctions

{(oj-f ^2/)(ic— ^2/)

—

{x—iy )
2e—(3c’‘+2/“)/2a®^

It is easily verified that the angular momentum has the values 2fh,

0, — for these three states respectively.

§ 43. The Spin of the Electron
In dealing with problems about electrons according to quantum
mechanics, one finds one does not get agreement with experiment

if one assumes the electrons to be simply point charges repelling one

another according to the Coulomb law of force. It is necessary to

make the assumption that each electron is spinning and so has an

internal angular momentum, and also that it has a magnetic moment.
To make the theory agree with experiment we must assume that the

eigenvalues of the Cartesian comx^onent of the sj)in angular momen-
tum in any direction are and — -|/i, and that the magnetic moment
of the electron (with its sign reversed) always lies in the same direc-

tion as the spin angular momentum and has as eigenvalues for its

comx)onent in any direction the values * efiflmc and — e?il2mc. Thus
if an electron in a certain state of spin has a spin angular momentum
of in a particular direction, it will have a magnetic moment

* The e hei’o, denoting minus the charge on an electron, is, of course, to bo dis-

tinguished from the e denoting the base of exponentials.
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—e?il2mc inthis same direction. A theoreticalreasonforthese assump-

tions will he provided by the relativity theory of the electron given

in Chapter XIII. For the present we shall merely take them as

empirical results and investigate their principal consequences.

Let s^, Sy, be the three Cartesian components of the spin angular

momentum. We require quantum conditions for these three observ-

ables, to replace the classical conditions that they all commute. In

§ 44 the quantum conditions will be obtained for the three com-

ponents of the angular momentum about a point of a single particle

and also of a set of particles. It will be found that these quantum
conditions are of the same form for a single particle as for a set of

particles, which suggests that this form, namely equations (8) of § 44,

is the general one governing any angular momentum, even the

angular momentum of a spinning body. This gives us the quantum
conditions

for Sy, Sg., which may be written alternatively

SySg,Sg,Sy = iJis^ = ihSy s^Sy—SyS^ = (39)

and combined in the single vector equation

sxs = iJis,

There will be further algebraic relations satisfied by 5^, Sy^ 5^, owing

to the fact that each of these observables has only two eigenvalues

and — yti. Thus its square will have only the one eigenvalue

and may therefore be put equal to the number
(40)..2 w-

It is convenient to write

'X
S,V Mia.2' V

and or^.

moment of the electron then has the components
introducing the three new observables a

X'> ^Ip The magnetic

eTi eli eh

2mc ’ 2mc ’ 2mc ’

so that these three observables cr^, a.y, a^ are sufficient to describe

completely the spin of the electron. They form the components of

a vector or.

From (39) we find

— ^y = ^z = (41

)

and from (40) 2 __ 2 2 ^a,j, : ay a^ 1
,
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corresponding to the fact that each or has just the two eigenvalues
1 and 1. From the first of equations

(41 )

so that

^y '

Two observables like these which satisfy the commutative law of
multiphcation except for a minus sign are said to anticommute. Thus
or anticommutes with o-^ and from symmetry any of the three
observables o-^, o-^, anticommutes with any other. We now obtain
from

(41 )

^y^z %<y.X

cr^ o^ ~ %a.y

^x^y

—^z^y
—^x^z

^y ^z —
(42 )

We must verify that the relations
(42 ) are invariant under a rota-

lon of axes, in order to show that our assumptions about the spin
are permissible. Let the components of cr referred to a new set of
mutually perpendicular axes be

cTi = l-^a^-\-m-^Gy-\-n^a^

0-2 = Z2 cr^+mg CTg

CTg = ^3<^a;+m3 cTy-^-n.^ o-g,.

From
(42 ) we now obtain

erf =
= a|+7^f a|+Z^mi(a^(T^+a^aJ+

Again,

o-acrg = (h<^x+'in^cry+n^G^)(l^a^^m^ay-^n^a^)

= hh <^1+^2m3al+n^ ^3 o-l+Zam3 O-^ a^+mg Z3 a^+

__
+^2 ^3 m3 cr^ a.y+n^ cr^ cr^+h ^3 <^0:- ^2^3+m2m3+^2^3+^(^2W3-m2 Z3)a-,+ i(^2^3-^2

^

3)o-a.+

= ^{hPx+m^cT^~\-n^G,) = ia^.
+'^{'^2h-h‘^s)<^y

Thus 0-1, 0-2, 0-3 satisfy relations of the same form as
(42 ).
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We shall now obtain matrices to represent the spin observables

<7^, Oy, cTg,. These matrices need have only two rows and columns,

since the observables they represent have each only two eigenvalues.

If we take a representation in which o-g is diagonal, then cr^ will be

represented by

(;

Let be represented by
U2'

Since o-^ is a real observable this matrix must be Hermitian, so that

and must be real and ag and conjugate complex numbers.

The equation gives us

c
a.

a^

<x,

a.

—«2\

I/ Vuq CLaJ

so that a^ = a^ = 0. Hence o-^ is represented by a matrix of the form

/O a^\

0 /

The equation = 1 now shows that a^a^— 1. Thus and ag,

being conjugate complex numbers, must be of the form and

respectively, where cx is a real number, so that cr^ is represented by

a matrix of the form
/O e''“\

\e-^“ 0 /

Similarly it may be shown that dy is also represented by a matrix

of this form. Hy suitably choosing the phases in the representation,

which is not completely determined by the condition that cr^ shall be

diagonal, we can arrange that o-^. shall be represented by the matrix

The rejoresentative of a.y is then determined by the equation dy^icr^cr^.

We thus obtain finally the three matrices

C D (” -:) C J)
to represent d^, dy, and cr^ respectively, which matrices satisfy all the

algebraic relations (42). The component of the spin vector cr in an
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arbitrary direction specijS.ed by the direction cosines I, m, n is repre-

sentedby
, ^

\l-i-zm —n )

In our representation with o-g diagonal, a state of spin will be

represented by a function (cr^l) of the variable whose domain

consists of only the two points +1, — 1. This function is thus a pair

of numbers. The state for which has the value unity will be repre-

sented by the function, /a(cr') say, consisting of the pair of numbers

1, 0 and that for which it has the value — 1 by the function, f^icr'z)

say, consisting of the pair 0, 1. Any function of the variable

i.e. any pair of numbers, can be expressed as a linear combination

of these two. Thus any state of spin can he obtained by superposition

of the two states for which equals +1 and — 1 respectively

.

For

example, the state for which the component of or in the direction

I, m, n, represented by (43), has the value 1 is represented by the

pair of numbers u, b which satisfy

na-\-Q—im)h — a

(Z-f-im)a—nb = b.

This gives a I—im l-\-n

h 1

—

n l^im'

If this state is regarded as a superposition of the two states for which

equals -1-1 and — 1, the relative weights in the superposition pro-

cess are as

\a\^
:
16]^ = \l—im\^

:
(1

—

n)^ = l-j-^ :
1

—

For the complete description of an electron we require the spin

observables a together with the Cartesian co-ordinates x, y, z and

momenta Py, p^. The spin observables are assumed to commute
with these co-ordinates and momenta. Thus a complete set of com-

muting observables for a system consisting of a single electron will

be cc, y, z, a^. In a representation in which these are diagonal, the

representative of any state will be a function of four variables x', y'

,

,
cr'. Since has a domain consisting of only two points, this

function of four variables is the same as two functions of three

variables, namely the two functions

(x'2/Vl)+= (a:', 2
/', 2',-l-ll) {x'y'z'\)_ {x\y\z'

Thus the presence of the spin may he considered either as introducing

a new variable into the wave function representing a state or as giving

this wave function two components.



VIII

MOTION IN A CENTRAL FIELD OF FORCE
§ 44. Properties of the Angular Momentum
An atom consists of a massive positively charged nucleus together
with a number of electrons moving round it, under the influence of
the attractive force of the nucleus and their own mutual repulsions.
An exact treatment of this d3Tuamical system would be a very difficult

mathematical problem. One can, however, gain some insight into
the main features of the system by making the rough approximation
of regarding each electron as moving independently in a certain
central field of force, namely that of the nucleus, assumed fixed,

together with some kind of average of the forces due to the other
electrons. Thus our present problem of the motion of a particle in
a central field of force forms a corner-stone in the theory of the atom.

Let the Cartesian co-ordinates of the particle, referred to a system
of axes with the centre of force as origin, be x, y, z and the corre-

sponding components of momentum They satisfy the
quantum conditions

\x, y] = 0 [x, = 1 lx, py] = 0,

&c. The Hamiltonian, with neglect of relativity mechanics, will be
of the form __ ^ o o ov -r-rH = 1 12m . {Px-\-JPy-^I>‘i)-\-V, (1)

where V, the potential energy, is a function only of ix^-{-y'^-\-z^).

We now introduce the components of angular momentum defined,

as in the classical theory, by
= yjPz—^Vv ^

2,
= ^'Px—^'Pz = ^Py—yPx^ (2 )

or by the vector equation
m = xxp.

From these equations we obtain at once the identity

mj^x-\-myy-\-m^z = 0.
(
3 )

We must now evaluate the P.B.’s of the angular momentum com-
ponents with the observables x, Pj., &c., and with each other. This

we can do most conveniently with the help of the laws (7) and (8)

of § 32, thus

[«*a. a:] = ixpy—yp^, x\ = x\ = y
[to,, y'] = [xpy—ypy., yl = x[jpy, yl = —x
[to,, z] = ixpy—yp,., z] = 0, (5)

T3695
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and similarly

!Pxl = Py Py] = —Px
b^z^ P^ =

with corresponding relations for and nfiy. Again

[niy, mj = \zp^—xp^, mj = 2 mj— [a?,

= —^Py+yPz = '^x

[m^, mj = my [m^, m^] = .

These results are all the same as in the classical theory. The sign in

the results (4), (6), and (8) may easily he remembered from the rule

that the + sign occurs when the three observables, consisting of the

two in the P. B. on the left-hand side and the one forming the result

on the right, are in the cyclic order {xyz) and the — sign occurs

otherwise.

Prom (4) and (6) we obtain

a;2-l-y2_|_2j2] = xlm^, x'\x-^y\m^, yly

— xy-\-yx—yx—xy = 0. (9)

Similarly from (6) and (7) we find

^ 0 . (10)

Thus commutes with {x^ -\-y^ and with (p|+pJ+Ps)*
therefore commutes with the Hamiltonian H which, according to (1),

is a function of these two observables only. Similarly and rriy

commute with H. Thus the angular momentum is a constant of the

motion, as in the classical theory.

Equations (8) may be put in the vector form

mxm = (11)

li we have several particles with angular momenta mi, m.^ . .
. ,

each
of them will satisfy (11), thus

m^xm^ = ihtn^.

Eurther, any one of these angular momenta will commute with any
other, so that

m^xm^+m^xm^ =0 {r^s).

Hence iE M = is the total angular momentum,
MxM = Xrs m^Xmg= 5^^ m^Xm^+S^^g (m^xm^+m^xm^)

= ihX^ — ihiM.

This result is of the same form as (11), so that the components of
the total angular momentum M of any number of particles satisfy

§44

(6 )

(7)

I
(8)
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the same commutability relations as those of the angnlar momentum
of a single particle. Thus ( 11 ) or (8 ) may he regarded as the general

commutability relations satisfied by any angular momentum. They cer-

tainly hold when the angular momentum is that of a number of

particles, and may be assumed to hold also for the angular momentum
of a spinning body, as was done in § 43 for the spinning electron.

We introduce the observable h defined as the positive square root

h = (12 )

Equations
(
8 ) show that our observables m,^, m^, if measured in

units which make = 1
, satisfy just the same conditions as the a, y

of § 30, the present h corresponding to the X; of § 30. Thus we can
apply the results of § 30 directly to our present observables. We
obtain in this way that h commutes with and that its

eigenvalues are integral or half odd integral multiples of H greater

than zero. Also for any eigenvalue k' of /c, the possible eigenvalues

of or are

k'—lh, k'—lh, Jc'—lh ...

and are thus half odd integral or integral according as h' is integral or

half odd integral. However, by using the further condition that

my, m^ are of the form
(
2

)
we can show that their eigenvalues must

be integral and thus that those of h must be half odd integral. We
have, in fact, that m^ is represented by the operator — iih{xdl8y—ydjdx),

which, if one makes the transformation x ~ p oos<j>, y — p sin <56 to the

cylindrical variables p, </>, becomes the operator — ilidl8(f>. The
general eigenfunction of this operator is of the form /(p) m'^

being the eigenvalue and/(p) being an arbitrary function of p. How
it is implied throughout our theory that an eigenfunction is a single-

valued function of its variables and hence m' must be an integral

multiple of h. Similarly it may be shown that and have only

integral eigenvalues. Thus the eigenvalues of the components of

angular momentum of a particle moving in an orbit must be integral

multiples of li, although those of the components of angular momen-
tum in the general case, which satisfy ( 8 ) but need not be of the

form
(
2 ), may be either integral or half odd integral. Those assumed

in § 43 for the components of spin angular momentum of an electron

were half odd integral.

The components of angular momentum in different directions do
not commute with each other, so that one cannot in general assign



140 MOTION IN A CENTRAL FIELD OF FORCE §44

numerical values to them simultaneously. One can at most give a

numerical value to the component in one particular direction. The
state of the system wiU then be one which, in the language of Bohr’s

theory, is s^acially quantized in that direction. There is, however,

one special case in which one can assign numerical values to all the

components simultaneously, namely, one can give them all the value

zero, since this will not contradict the commutability relations (8).

The resulting state of zero angular momentum, with h = is then

one that is spacially quantized simultaneously in all directions.

§45. Transition to Polar Co-ordinates
Por further discussion of the problem of motion in a central field of

force it is convenient to introduce polar observables. We introduce

first the radius r, defined as the positive square root

If we evaluate its P.B.’s with Py, and we obtain, with the help

of formula (16) of Chapter VI,

y ^
dr X _ _ y ^ ^

z
=^ = 7 ir,Py\ = - =

the same as in the classical theory. We could alternatively have

evaluated these P.B.’s by the method given in § 39 for \x, JT].

We now introduce the observable p^, defined by

Its P.B. with r is given by

r [r, pj = [r, rp;\ = [r, xp^+ypy-\-zp;\

= Py\ -\rzir, J
= x.xlr-\-y.ylr-\-z.zlr — r.

Hence [r, p^ = 1

or rpj,—p^r — iH,

so that p^ is canonically conjugate r. Now the eigenvalues of r, from
its definition as a positive square root, must be all positive or zero,

so that we have obtained a contradiction to the result, proved at the
end of § 19, that an observable can have a canonical conjugate only
if its eigenvalues include all numbers from —co to co . This incon-
sistency arises from the fact that the observable p^ defined by (13)
does not strictly exist, since r has the eigenvalue zero so that r~^
does not strictly exist. In spite of this defect the observable p^. is
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a useful one for the study of motion in a central field of force. Our
equations, which will often involve and will sometimes involve r~^

in other ways than through will he inaccurate, hut only in so far

as they apply to the one point r == 0, and this is too small a region

of space to invalidate physical conclusions obtained from them.
The observable defined by (13) is a real one, since its conjugate

complex Py. is given by

p^r = Px^+PyV-^p^z+irb

— = Vr'^i

SO that p^ — p^.

We can easily verify that our two new observables r and p^ com-
mute with the angular momentum. Equation (9) shows us that

commutes with It must therefore commute also wdth r, since r is

defined as a square-root function so that everything that commutes
wdth commutes also with r. Again, for p^. we have

== \rp^, == IxPx+yPy^
= -yPx—^Pv+^Py-^yPx = 0-

Thus r and p^ commute with m^, and hence also with and nriy

and with Tc.

We can now express the Hamiltonian in terms of our radial

observables r and p^ and also h. We have, if S^yz denotes a sum over

cyclic permutations of the suffixes x, y, z,

p_p2 ^ ml = ixpy—yp^Y
= '^xyz i^Py^Py+yPxyPx—^PyyPx—yPx^Py)
= {x‘^pl+y’^pl—ocpa:Pyy—yPyPx^-^^^pl—^PxPx^—

—2i?ixp^

= {x^-\-y^^z^){pl+pl-\-pl)--{xp^+yPy-^zp^) X
X {Pa^x-^Pyy-\-p^z^2m)

= r'^{pl+Pl+Pl)— {^Pr-^^^yPr

= r\pl-\-pl+Pl)—T^Pl-
Hence

This form for H is such that h commutes not only with H, as is

necessary since A; is a constant of the motion, but also wdth every

observable occurring in H, namely both r and p^. Thus in dealing
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mth tlie Hamiltonian in this form we can treat ifc as a mimber. The
permissible numbers we can take for h are its eigenvalues and are

thus positive half odd integral multiples of If we write down the

Schrodinger equation for the stationary states, it will now read

(rl) = (15)

the single variable r in the wave function (r|) being sufficient when
k is counted as a number. Any value of the parameter H' for which

this equation, with a permissible value for h, has a solution (satisfying

the boundary conditions to be discussed later) is a possible energy-

level of the system. The energy-levels (except those for which k = ^K)

are aU degenerate and belong each to several independent stationary

states., corresponding to the various possible eigenvalues of a Car-

tesian component of the angular momentum. The number of these

states, for any value of k, is the odd number 2k jiH.

If we write down the Schrodinger equation in the original

Cartesian co-ordinates x, y, z, we shall have

[-^V^+vYxyz\) = H'(xyz\), (16)

where is the Laplacian operator This be-

comes, on transforming to polar co-ordinates r, 6, </>,

^2 / S'

\ 2m\dr^ ~^r8r~^ 6 86 ^86'^ rHinW 8cf>^^/
^ ^

J

^

= H' (r0^1).

The solutions of this equation are of the form

(r64>\) = x(r)S^m).
where is a spherical harmonic of order n satisfying

/IS. 8 I 8^ \
\ "h 1)^73, (^*5^) 5
(A
\sm

0
_ 8 1 82

686 ^ 86 sia^6 8<ji'^

n being an integer, and x{^) is a function of r only, satisfying

f ^2/52 2 8 n(n+l)\ ]

(17)

This equation, like (15), is such that the values of H' for which it

has a solution are the energy-levels of the system.
The equivalence of equations (15) and (17) may be seen from the

fact that if in (15) we put (r|) = rx(r) we obtain just equation (17)
with n == kj^— J. The fact that the two eigenfunctions (r| ) and x(^)
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are not identical but differ by this factor r is due to their different

physical interpretations. A solution (r|) of (15) represents a state for

which the probability of the particle lying in the spherical shell

between r and rArdr is proportional to l(r|)P dr. On the other hand,
a solution of (16) represents a state for which the probabihty

of the particle lying in a small volume dxdydz is \{xyz\ )p dxdydz or

dxdydz, so that the probability of its lying in the spherical

shell between r and r-\-dr is proportional to |x(^)P^^ dr. Thus the

physical interpretations require (r|) to be proportional to rx{r).

It should be noticed that not every solution of (17), when multi-

plied by the appropriate spherical harmonic, will give a solution of

(16) , as it may fail to satisfy (16) at the origin. One can see most
clearly how this comes about by considering the special case for

which the potential V vanishes, giving us the problem of the free

particle. If we further take H' — 0, equation (16) reduces to

V\xyz\) = 0 (18 )

and equation (17) to

2
_

0
_

Qy2, y gy

n{n-\- 1)1

I
x(r) = 0 . (19 )

Now a solution of (19) for n = 0 is x(^) = 1/^j but this solution

multiplied by the appropriate spherical harmonic \ does not

satisfy (18), since, although V^(l/'^) vanishes for any finite value of r,

its integral through any volume about the origin is Ivr, and hence

= 477S(cr)S(y)S(2:).

Thus the solution x(^) == 1/^ of (19) does not represent a stationary

state of the system. Again the solution x(^) — 1 of (19) for = 1,

when multiplied by the spherical harmonic = cos 6, gives a wave
function {xyz\), the integral of the square of whose modulus over any
volume, however small, that contains the origin is infinite. This wave
function must represent a state for which the particle is certainly at

the origin and this cannot be a stationary state of zero energy for

the problem of the fi'ee particle. Similarly for arbitrary n in equa-

tion (19), of the two solutions x('^) = ^i^d x(^) — the second
will not give the representative of a stationary state of the system.

It thus appears that equation (17) is not adequate to replace equa-

tion (16) as the necessary and sufficient condition for the repre-

sentative of a stationary state. Equation (17) must be supplemented
by a suitable boundary condition at the point r = 0. Any solution
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P^(r) of (17) fox wMoli the integral Jq r^lx(^)l^
convergent must

certainly be rejected, and also some for which this integral is con-

vergent, namely those which, when operated on by give^ an

infinite result involving the S function at the origin. These conditions

show that only those solutions are to be allowed which, if they tend

to infinity as 0, do so more slowly than Ijr. The corresponding

boundary condition for the function (rj) of eq^uation (15) is that it

shall tend to zero as r 0.

There are also boundary conditions for the eigenfunction at r = oo

.

If we are interested only in ‘closed’ states, i.e. states for which the

particle does not go ofi to infinity, we must restrict the integral

|(r|)P dr or J°°
cZr tobe convergent. These closed states, how-

ever, are not the only ones that are physically permissible, as we can

also have states in which the particle arrives from infinity ,
is scattered

by the central field of force, and goes ofi to infinity again. !For these

states the wave function {ocyz\) may remain finite as oo. Such

states will be dealt with in Chapter X under the heading of collision

problems. In any case the eigenfunction {xyz\) must not tend to

infiinty as r -> oo, or it will represent a state that has no physical

meaning.

§ 46. Energy -levels of the Hydrogen Atom
The above analysis may be apphed to the problem of the hydrogen

atom with neglect of the relativity variation of mass with velocity

and the spin of the electron. The potential energy V is now jr",

so that equation (15) becomes

dr^
+

1 ]

W~r (rj) = 2mH'
(20 )

when written in terms of a new observable h, equal to times the

previous h. A thorough investigation of this equation has been given

by Schrodinger.* We shall here obtain its eigenvalues H' from a con-

sideration of its eigenfunctions expressed in the form of power series.

It is convenient to put

(rl) = /(r)e-^/“, (21)

introducing the new function /(r), where a is one or other of the

square roots

a = ± (22)

* Selirodinger, Ann. d. Physik, vol. Ixxix, p. 361 (1926).
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EcLuation (20) now "becomes

id? 2d J 2me^ ^ 1 f/ \ o
[dr^ a dr ^2 "r ^2 ^j/v) (23 )

We look for a solution of this equation in the form of a power series

f{r) = X3 c^y®, (24)

in which consecutive values for s differ by unity although these

values themselves need not be integers. On substituting (24) in (23)

we obtain

Sg 03(5(5— l)y®~^

—

25/<x.y®“^

—

{k^—J)r®~^+2me^/^2. rs-i}= 0,

which gives, on equating to zero the coefficient of the following

relation between successive coefficients c^,

C3[5(5— 1
)— (F_i)] = C3_i[2(5— l)/a— (25)

We saw in the preceding section that only those eigenfunctions (r|
)
are

allowed that tend to zero with r and hence from (21) /(r) must tend
to zero with r. The series (24) must therefore terminate on the side

of small 5 and the minimum value of 5 must be greater than zero.

Now the only possible minimum values of 5 are those that make the

coefficient of in (25) vanish, i.e. /b+i ^nd — and the second
of these is negative or zero. Thus the minimum value of 5 must be

Since h is always half an odd integer, the values of 5 will all

be integers. The series (24) will in general extend to infinity on the

side of large 5 . For large values of 5 the ratio of successive terms is

Cg ^
Cg.jL sa

according to (25). Thus the series (24) will always converge, as the

ratios of the higher terms to one another are the same as for the series

1 /2y\s
^^

5 ! ('a)’
which converges to e^r/a^

We must now examine how our solution (rj) behaves for large

values of y. We must distinguish between the two cases of H' positive

and H' negative. For H' negative, a given by (22) will be real. Sup-
pose we take the positive value for a. Then as y —> 00 the sum of the

series (24) will tend to infinity according to the same law as the sum
of the series (26), i.e. the law Thus from (21) (y|) will tend to

infinity according to the law and will not represent a physically
3595 rr
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possible state. There is therefore in general no permissible solution

of (20) for negative values of H'. An exception arises, however,

whenever the series (24) terminates on the side of large 5, in which

case the boundary conditions are all satisfied. The condition for this

termination of the series is that the coefficient of in (25) shall

vanish for some value of the suffix 5—1 not less than its minimum
value which is the same as the condition that

for some integer s not less than With the help of (22) this

condition becomes

H' = me^
2i^’ (

27 )

and is thus a condition for the energy-level H'

.

Since 5 may be any
positive integer, the formula (27) gives a discrete set of negative

energy-levels for the hydrogen atom. These are in agreement with

experiment. Each of them (except the lowest one s — 1) is de-

generate, as it may occur with various possible values for h, namely

,

any positive half odd integer less than s. This degeneracy is in addi-

tion to thatmentioned in the preceding section arising from the various
possible values for a component of angular momentum, which de-

generacy occurs with any central field of force. The k degeneracy

occurs only with an inverse square law of force and even then is

removed when one takes relativity mechanics into account, as will

be found in Chapter XIII. The solution of (20) when H' satisfies (27)

tends to zero exponentially as r -> oo and thus represents a closed

state, corresponding to an elliptic orbit in Bohr’s theory.
Eor any positive values of £?', a given by (22) will be pure

imaginary. The series (24), which is roughly the same as the series

(26), will now have a sum that remains finite as r oo. Thus (r|)

given by (21) will now remain finite as r oo and will therefore be
a permissible solution of (20), since it will correspond to an eigen-
fxmction {xyz\

)

that tends to zero according to the law Ijr as r co.

Hence in addition to the discrete set of negative energy-levels (27),
all positive energy-levels are allowed. The states of positive energy
are not closed, since their representatives (r|) do not make the integral

1(^1 )|^ converge. These states correspond to the hyperbolic orbits
of Bohr’s theory.
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§ 47. Selection Rules
When D, the total electric displacement of a system, is represented

in a Heisenberg representation, it often happens that a great many
of its matrix elements, (a'|D|cx") say, vanish. In fact they may all

vanish except those for which the ol'’s and a"’s are connected in a

certain way. When this is the case, according to Heisenberg’s inter-

pretation of the matrix elements, a transition of the system with

emission of radiation can take place only between two stationary

states whose labels oc' and oc" are connected in this way. There is

then, as we say, a selection rule for the a’s, only certain selected

transitions being allowed. In general we must consider sejparately

the different Cartesian components D^, Dy, of D and obtain for

each of them the condition that its matrix element (od'|X>|o'") shall not

vanish. We shall then often find that for those transitions ol a"

which can take place, i.e. for which the vector {ol |D| a") does not

vanish, some of the Cartesian components {oc'\D^\oc"), {oc'\Dy\a'),

ioc'W ol") do vanish. There will then be conditions on the direction

of emission and state of polarization of the emitted radiation, which
conditions, according to Heisenberg’s assumption, will be the same
as the classical ones for the radiation emitted by an electric dipole

whose magnitude and direction are given by the vector

(a' ID I

od'' ) -{- (a"
ID [

)

.

There is a general method for obtaining all selection rules, which
is as follows. Let D be one of the Cartesian components of D. We
must obtain an algebraic equation connecting D and the a’s which
does not involve any observables other than D and the a’s and which
is linear in D. Such an equation will be of the form

2:. /.D g, = 0, (28)

where the //s and g^’s are functions of the a’s only. When this equa-
tion is expressed in terms of representatives, it gives us

S, /,(«') («'li>|a") sr/a") = 0,
or

(a'lDla") XrMoL')g,{oL") == 0,

which shows that (a'lZ>|a") = 0 unless

= 0. (29)

This last equation, giving the connexion which must exist between
a' and ol" in order that (a'|I>|a") may not vanish, constitutes the

selection rule, so far as the component jD of D is concerned.



148 MOTIOIT IN A CENTRAL FIELD OF FORCE §47

We shall now obtain the selection rules for and h for an electron

moving in a central field of force. The components of electric dis-

placement are here proportional to the Cartesian co-ordinates x,y,z.

Taking first we have that commutes with z, or that

m^z—zm^ = 0.

This is an equation of the required type (28), giving us the selection

rule
m'—m" = 0

for the ^-component of the displacement. Again, from equations (8)

we have
[m^, [m^, xj] = [m^, «/] = — a;

or mix—2mg.xm^-\-xml—h^x—O,

which is also of the type (28) and gives us the selection rule

m'/

—

2m'g.ml~{-mf— = 0

or (m^

—

ml—h){ml—

—

0

for the a?-component of the displacement. The selection rule for the

2/-component is the same. Thus our selection rules for are that

for the emission of radiation with a polarization corresponding to an

electric dipole in the z-direction, cannot change, while for that

corresponding to an electric dipole in the x-direction or y-direction,

ml must change by ±_h.

We can determine more accurately the state of polarization of the

radiation emitted with a transition in which changes by + h, by
considering the condition for the non-vanishing of matrix elements

of x-\-iy and x—iy. We have

[m^, cr-fiy] = y—ix = —i{x-\-iy)
or

^;5(^+ ^2/)— (i^+^2/)(Ws+^) = 0,

which is again of the type (28). It gives

m'

—

m'l—h = 0

as the condition that {m'^x-\-iy\m"f) shall not vanish. Similarly

ml—

—

0

is the condition that (m'[ir

—

iy\m"f) shall not vanish. Hence

{m'^x—iy\ml—h) = 0

{m'^x\ml—h) — i{m'^y\ml—h) = {a-\-ib)e^^^

or
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say, a, 6, and oj being real, and similarly

{m'^—h\x\m'^) = — — fi\y\m'^) = {a—
Thus the vector (mg|D|m'— h)~\-{m'^—^^|D|my, which determines the

state of polarization of the radiation emitted with transitions for

which ml — m'— has the following three components

+ — 7h\x\ml) — {a-\-ib)e^^^-\-{a— ib)e~'^^* =
= 2acos<u;^— 26sinaji

—i{a-\-ib)&^*-\-i{a— ib)e~'^^^ —
= 2a sin coif 4“ 26 cos a>i

K30)

{ml\z\ml—

—

lti\z\7nl) == 0. J

From the form of these components we see that radiation emitted

in the ^-direction will be circularly polarized, that emitted in any
direction in the xy plane will be linearly polarized in this plane, and
that emitted in intermediate directions will be elliptically polarized.

The direction of circular polarization for radiation emitted in the

2-direction will depend on whether co is positive or negative, and this

will depend on which of the two states m' or m" = ml— Ti has the

greater energy.

We shall now determine the selection rule for k.

\Jc\z-\ = +
We have

Similarly

and

= 2 {rriy X— y iUz)

— 2{myX—ym^) = 2{x7ny— w-^y).

[F,a:] = 2{ym^—myZ)

Hence
\Jc^ , y] = 2(m^ z—xm,^)

.

[P, [A;2, 2:]] = 2\lc^,m,yX^m,^y-\~ihz']

= 2my\lc\ a:]-2m,[/.^ y]+ 2^^;[A;^ 2]

= 4miy{ym^—m^z)— 4tm>^{m>^z— 2 ( 70
^2— zJc^)

=: X -\- m,y y+ 2 ) -f- 7ni)z 2 {Jc^z— zk^).

The first term here vanishes, from (3), leaving us with

which gives

[k\\k\z-\-\ -~^k^--W)z-{-2{k^z-zk^)
== — 2 {h^z -f- zlc^

)

-f- li^z.

k^z— 2k‘^zl<?‘ -\-zk^— 2W‘{k^z-\-zk‘^)-^li‘^z = 0. (31)
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Similar equations hold for x and «/• These equations are of the

required type (28), and give us the selection rule

or

A transition can take place between two states ¥ and h" only if one

of these four factors vanishes.

Now the jfirst of the factors, {¥ -{-h" can never vanish since

the eigenvalues of h are all positive. The second, {¥ -\~h"— Ti), can

vanish only M and ¥' = But transitions between two

states with these values for h cannot occur on account of the selection

rule for as may be seen from the following argument. If two

states (labelled respectively with a single prime and a double prime)

are such that ¥ = and ¥' == then, according to the discussion

at the end of § 44, each Cartesian component of the angular momen-

tum must vanish for each of them, i.e. m'^ = m'y = m'g. = 0 and

m" = m" = ml = 0. The selection rule for now shows that the

matrix elements of x and y referring to the two states must vanish,

as the value of does not change during the transition, and the

similar selection rule for or niy shows that the matrix element of

z also vanishes. Thus transitions between the two states cannot

occur. Our selection rule for Jc now reduces to

{¥—¥'+1i){¥—¥—h) = 0 ,

showing that h must change by +^. This selection rule may be

written

h'^—2¥¥-\‘¥'^—h^ = 0,

and since this is the condition that a matrix element {k'\z\¥) shall

not vanish, we get the equation

¥z— 2kzk-\-z¥—h^z = 0
or

\]c, [k, 2:]] == —z, (32)

a result which could not easily be obtained in a more direct way.

§ 48 . The Zeeman Effect for the Hydrogen Atom
We shall now consider the system of a hydrogen atom in a uniform
magnetic field. The Hamiltonian (1) with V — — e^jr, which de-

scribes the hydrogen atom in no external field, gets modified by the

magnetic field, the modification, according to classical mechanics,
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consisting in the replacement of the components of momentum,
Py^ A. tiy Py+^’k -A-y, p^+ejo.A^, where A^, A^, A^
are the components of the vector potential describing the field. For
a uniform field of magnitude J¥ in the direction of the 2:-axis we may
take Ay — A^ = 0. The classical Hamiltonian
wiU then be

This classical Hamiltonian may be taken over into the quantum
theory if we add on to it a term giving the effect of the spin of the

electron. The electron has a magnetic moment — e^?^/2mc.<r, whose
energy in the magnetic field will be /2mc . a^. Thus the quantum
Hamiltonian will be

R 2mlyPa:—i~-^y) +{Pu+i^-^0^ +P>2
z 7+ 2mc (33)

V “ o /

There ought strictly to be other terms in this Hamiltonian giving the

interaction of the magnetic moment of the electron with the electric

field of the nucleus of the atom, but this effect is small, of the same
order of magnitude as that of the relativity variation of the mass of

the electron with its velocity, and will be neglected here. It will be

taken into account in the relativity theory of the electron given in

Chapter XIII.

If the magnetic field is not too large, we can neglect terms involving

so that the Hamiltonian (33) reduces to

1 . . . . . .. e2 . . . e^<>¥H =
2nm

1 eJ¥
1

r 2mc
(m^+ i^o-^). (34)

The extra terms due to the magnetic field are now ej¥l2mc

.

But these extra terms commute with the total Hamiltonian and are

thus constants of the motion. This makes the problem very easy.

The stationary states of the system, i.e. the eigenstates of the Hamil-

tonian (34), will be those eigenstates of the Hamiltonian for no field

that are simultaneously eigenstates of the observables and o-^, or

at least of the one observable and the energy-levels of the

system will be those for the system with no field, given by (27) if

one considers only closed states, increased by an eigenvalue of

eJ¥ /2mc . (mg+^crg)- Thus any stationary state of the system with no
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field which is spacially quantized in the ^-direction, i.e. for which
has the numerical value w'

, an integral multiple of H, and for which
also has the numerical value ±1, will still he a stationary-

state when the field is applied. Its energy will he increased hy an
amount consisting of the sum of two parts, a part eJ¥-j^mc arising

from the orbital motion, which may he considered as due to an
orhital magnetic moment —em'^l2mc, and a part eJ¥ I2mc arising

from the spin. The ratio of the orhital magnetic moment to the

orhital angular momentum m'z is — c/2mc, which is half the ratio of

the spin magnetic moment to the spin angular momentum. This fact

is sometimes referred to as the magnetic anomaly of the spin.

Since the energy-levels now involve the selection rule for

ohtainedin the preceding sectionbecomes capable of direct comparison

with experiment. According to this selection rule, can change by
0 or —

H

during an emission process. This means that the amount
of energy emitted will differ by — /2mc, 0 or /2mc respectively

from the amount emitted when there is no field, since will not

change as it commutes with the electric displacement of the system.

Thus the frequency of the emitted radiation will differ hy —eM
0 or eJ^l4:TTmc from that for no field, so that each spectral line for no
field gets split up into three components. If one considers the radia-

tion emitted in the 2-direction, then from (30) the two outer com-
ponents will he circularly polarized while the central undisplaced one
will be of zero intensity. These results are in agreement with experi-

ment and also with the classical theory of the Zeeman effect. The
agreement with the classical theory ceases, however, when one takes

into account relativity mechanics and the interaction of the spin with
the electric field of the nucleus.

§ 49. Combination of Angular Momenta
Suppose we have two particles moving in the central field of force,

whose angular momenta are the vectors m and |x. The magnitudes
of these vectors are the observables h and k, defined hy (12) and

respectively. The total angular momentum will then he the vector
M — m-j-jjL, whose magnitude is

Each of the observables h and k commutes with all the components
of m, |x, and M. Thus k, K will commute with each other and
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can be given numerical values simultaneously. Our problem now is

to determine the possible numerical values for K when h and k have
given numerical values.

The easiest way of solving this problem is to suppose k and k are

equal to two given numbers, as we can do since they commute with all

the observables mentioned in the problem, and then to use a matrix
representation in which and /Xg, are diagonal. We can ignore all the

observables describing the dynamical system that are not functions

of the components of m and |x. Our matrix representation will then
have only a finite number of rows and columns, each labelled by a
number m' having one of the values h— h— . . . — and
a number having one of the values k— k—p... — The
possible values of = w'-{-/x^ will then be Aj+k— k-\-K— 2^,

k-\-K—3^ ... — The number of times each of them occurs

is given by the following scheme (if one assumes for definiteness that

k ^ k),

k-\~K— k-{-K— 2^., h-\-K— 3^, . . . k— k, h— k— ...

1 2 3 ... 2/c 2k: ...

r (35)— k-\-K, — k-\~K— H, ... —k— K-\-9i

2k 2k— 1 ... 1

If we now make a canonical transformation to a representation in

whichK and are diagonal, the number of rows and columns of the

matrices for which has a given value M'^ must remain unaltered. If

K', . . . are the possible values for K, there will be a set of rows and
columns having the ilf’g.-values K'— K '—p . . . —jST'+p, together

with a set having the Jkf^-values K"—in, ...—

+

&c.

Comparing this distribution of values with (35), we see that the

possible values for K must be

h-\~K—p, h-\-K—p, Tc-\-k—^...Tc—K-j-p. (36)

This result is a quite general one applying to the combination of

any two angular momenta, not necessarily the orbital angular

momenta of two particles. For example, it could be applied to the

orbital angular momentum and spin of an electron. In this case,

since the spin angular momentum has the magnitude k = K, it shows
that when the orbital angular momentum has the magnitude k, the

combined angular momentum can have only one or other of the two
magnitudes k + -p.

We now have a general method for dealing with complicated
3595 X
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atomic systems. For an isolated system the total angular momentum
M is always a constant of the motion and its resultant K together

with one of its components will be two commuting constants of

the motion. We try to express M as the sum of two angular momenta
m and |i whose magnitudes 1c and k are constants of the motion. If

we can do this, then we try to express either of the parts, m say,

itself as a sum of two angular momenta, and m2 say, whose
magnitudes h-^ and ^2 are constants of the motion, and so on. We
obtain in this way a series of constants of the motion K, h, k,

Jc2 . which all commute with each other and may, if there are

enough of them, be taken as defining a Heisenberg representation.

The possible numerical values for the K, Jc, k ..

.

specifying a row and
column are restricted by the general rule (36 ). The energy will be

some function of K, h, k, ... but independent of In general

one cannot secure that h, k, are exactly constants of the motion,

but one may be able to choose them so that they are approximately
so and then apply a perturbation method, as discussed in the next

chapter.

We shall now obtain the selection rule for the magnitude K of the

total angular momentum M of a general atomic system. Let m be

the orbital angular momentum of one of the electrons, whose co-

ordinates are x, y, z, say, and let M—m =
|
jl . It is not necessary

for the present discussion that the magnitudes k and k of the two
angular momenta m and p, into which M has been split up should

be constants of the motion. We must obtain the condition that the

{K\ K") matrix element of x , «/, or z shall not vanish. This is evidently

the same as the condition that the {K'
,
K") matrix element of A^, A2,

or A3 shall not vanish, where A^, A2, and Ag are any three independent
linear functions of x, y, and z with numerical coefficients, or more
generally with any coefficients that commute with K and are thus
represented by matrices which are diagonal with respect to K. Let

We have

Aq = M^x^Myy-\-M^z
A^ = MyZ—M^y—iHx

\ = Mg.x—My,z— iliy

Ag = —MyX—iHz.

= = 0
(
37)
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from the general condition (
11

)
for angular momentum. Thus A^, Xy,

and Ag are not linearly independent functions of x, y, and z. Any two

of them, however, together with Xq are three linearly independent

functions of x, y, and z and may be taken as the above A^, Ag, and A3 ,

since the coefficients My, Mg all commute with K. Our problem

thus reduces to finding the condition that the {K', K") matrix ele-

ments of Xq, A^., Xy, and A^ shall not vanish. The physical meanings

of these A’s are that Aq is proportional to the component of the vector

{x, y, z) in the direction of the vectorM and A^, Xy, Xg are proportional

to the Cartesian components of the component of {x, y, z) perpen-

dicular to M.
Prom (4 ) together with the condition that x, y, and z commute

with |i we obtain

[_Mg, x] = x] = y

IMg, 2/]
= —JT [Mg, z] = 0.

Hence

= MyX+M^y—M^y—MyX = 0 .

Thus Aq commutes with Mg, and from symmetry it must commute
also with M^ and My, so that it must commute with K. It follows

that only the diagonal elements (i^'lAolX') of Aq can differ from zero,

so the selection rule is that K cannot change so far as this com-

ponent of the electric displacement is concerned.

With further applications of (38) we obtain

[Mg, AJ == [Mg, My-\z-Mg [Mg, yl-in [Mg, a;]

= —M^z-\-MgX—iJiy — Xy

[Mg, A^l = Mg [Mg, x-]-[Mg, M^-\ z-in [Mg, y]

= Mgy—MyZ^iTix = —A^

[ikT,, AJ = [Mg, M2 y+M^ [Mg, x-My [Mg, a;]

= Myy—M^x+M^x—Myy = 0 .

These relations between Mg and A^, Xy, Xg are of exactly the same form

as the relations (4), (5) between nig and x, y, z and also (37) is of the

same form as
(
3 ). The observables A^., Xy, Xg thus have the same pro-

perties relative to the angular momentumM that x, y, z have relative

to m. The deduction in § 47 of the selection rule for h when the

electric displacement is proportional to {x, y, z) can therefore be taken

over and applied to the selection rule for K when the electric dis-





IX

PERTURBATION THEORY
§50. General Remarks
In the preceding two chapters exact treatments were given of some
simple dynamical systems in the quantum theory. Most quantum
problems, however, cannot be solved exactly with the present re-

sources of mathematics, as they lead to equations whose solutions

cannot be expressed in finite terms with the help of the ordinary

functions of analysis. Eor such problems one must use a perturbation

method. This consists in splitting up the Hamiltonian into two parts,

one of which must be simple and the other small. The first part may
then be considered as the Hamiltonian of a simplified or unperturbed

system, which can be dealt with exactly, and the addition of the

second will then require small corrections, of the nature of a per-

turbation, in the solution for the unperturbed system. If this second

part contains a small numerical factor €, we can obtain the solution

of our equations for the perturbed system in the form of a power
series in €, which, provided it converges, will give the answer to our

problem with any desired accuracy. Even when the series does not

converge, the first approximation obtained by means of it is usually

fairly accurate.

There are two distinct methods in perturbation theory. In one of

these the perturbation is considered as causing a modification of the

states of the unperturbed system. In the other we do not consider

any modifi-cation to be made in the states of the unperturbed system,

but we suppose that the perturbed system, instead of remaining in

one of these states, is continually changing from one to another, or

making transitions, under the influence of the perturbation. Which
method is to be used in any particular case depends on the nature

of the problem to be solved. The first method is useful usually only

when both the Hamiltonian for the undisturbed system and the per-

turbing energy (the correction in this Hamiltonian) do not involve

the time explicitly, and is then applied to the stationary states. It

can then be used for calculating things that do not refer to any
definite time, such as the energy-levels of the stationary states of the

perturbed system, or, in the case of collision problems, the probabiHty

of scattering through a given angle. The second method must, on
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the other hand, he used for solving all problems involving a con-

sideration of time, such as those about the transient phenomena that

occur when the perturbation is suddenly applied, or more generally

problems in which the perturbation varies with the time in any way
{i,e. in which the perturbing energy involves the time explicitly in

an arbitrary way). Again, this second method must be used in colh-

sion problems, even though the perturbing energy does not here

involve the time exphcitly, if one wishes to calculate absorption and
emission probabilities, since these probabihties, unlike a scattering

probability, cannot be defined without reference to a state of affairs

that varies with the time,

§51. The Change in the Energy-levels caused by a Per-
turbation

The first of the above-mentioned methods will now be applied to the

calculation of the changes in the energy-levels of a system caused by
a perturbation. The perturbing energy, like the Hamiltonian for the

unperturbed system, must now not involve the time explicitly. Our
problem has a meaning, of course, only provided the energy-levels

of the unperturbed system are discrete and the differences between
them are large compared with the changes in them caused by the

perturbation. This fact results in the treatment of perturbation

problems by the first method having some different features according

to whether the energy-levels of the unperturbed system are discrete

or continuous.

Let the Hamiltonian of the perturbed system be

H = Ho+F, (1)

Hq being the Hamiltonian of the unperturbed system and V the small

perturbing energy. By hypothesis each eigenvalue H' of H lies very
close to one and only one eigenvalue Hq of Hq. It is convenient to

use the same number of primes to specify any eigenvalue of H and
the eigenvalue of Hq to which it lies very close. Thus we shall have
H" differing from HI by a small quantity of order F and differing

from H'q by a quantity that is not small unless H'q = We must
now take care always to use different numbers of primes to specify

eigenvalues of H and Hq which we do not want to lie very close

together.

Let ^fj{H') be an eigen-^ ofH belonging to the eigenvalue H'

,

so that

= H'4s{H').
(2 )
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This means that denotes a stationary state of the pertnrbed

system of energy Again, let eigen-i/f of Hq (at some
particular time t) belonging to the eigenvalue jETJ, so that

(3)

This iP{Hq) will denote a non-stationary state of the perturbed
system, and indeed a different non-stationary state for each different

value of the above t, but for the unperturbed system it will denote
a stationary state of energy Hq.
Now suppose that for the imperturbed system there is only one

stationary state for each energy-level the unperturbed system
is non-degenerate. This requires that Hq shall have only one inde-

pendent eigen-i/r belonging to any eigenvalue Hq (which is a condition

governing only the form of the observable Hq and independent of

whether we are considering the perturbed or the unperturbed
system). Trom our assumption that the changes in the energy-levels
caused by the perturbation are small compared with the differences

of the energy-levels of the unperturbed system, there must be only

one independent eigen-j/r of H belonging to any eigenvalue H'

,

so that

the perturbed system is also non-degenerate. The fact that the

perturbing energy V is small, or that Hq (at time t) and H are two
nearly equal observables, will require, not only that their eigenvalues

are nearly equal, but also that corresponding eigen-i/f’s are nearly

equal, apart from numerical factors. Thus we shall have

rP{H') = C^{H'Q)+ rP^, (4)

where c is a number and i//^ is a small j/r-symbol. We may assume
to be orthogonal to iP(Hq), since if it were not so it could be

expressed as the sum of two parts, one of which is orthogonal to

iP{Hq) while the other is a numerical multiple of ^{Hq) which can be

absorbed in the first term of the right-hand side of (4). We can now
take c = 1, so that we have

+</-!. (5 )

where is small and orthogonal to iP{H'q).

Trom (1), (2), and (5) we now obtain

With the help of (3), this gives
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If we neglect the second-order term this reduces to

V4,iS'o). (
6)

If we now multiply this equation throughout by c/>{Hq), the conjugate

imaginary symbol to ip{HQ), on the left, the second term will con-

tribute nothing, since

on account of ^(Hq) and ifii being orthogonal. We shall thus be left

with
B'-H'o = (7)

assuming and 4’(^o) be normalized.

This result gives us the first-order change in the energy-level of

any state caused by the perturbation. It shows that the first-order

change in the energy-level is equal to the average value of the perturbing

energy for the unperturbed stationary state. When formulated in this

way, this result in quantum perturbation theory is the same as in

the classical theory and as in the old quantum mechanics of Bohr’s

theory. One can say alternatively that the first-order change in an

energy-level is equal to the corresponding diagonal element of the

matrix representing the perturbing energy in a representation in

which the Hamiltonian for the unperturbed system is diagonal i.e.

in a Heisenberg representation for the unperturbed system.

We must now consider the case when the unperturbed system is

degenerate, so that there are several eigen-i/f’s of belonging to the

same eigenvalue H'q. The perturbation may now, perhaps, be such

that the perturbed system is non-degenerate, or that it is not so

much degenerate as the xmperturbed system. This means that each

energy-level of the unperturbed system gets split up by the per-

turbation into several energy-levels EL' all lying close to Hq.* We
shall now have that every eigen-?/f of EL is approximately equal to an

eigen-xfs of Hq, but the converse, that every eigen-i/f of Hq is approxi-

mately equal to an eigen-ip of H, will not be true, as may be seen

from the following argument. If ip^ and ip^, are two eigen-j/r’s of ELq

belonging to the same eigenvalue and are approximately equal

respectively to two eigen-ip’s of H belonging to two different eigen-

* To distinguish these energy-levels one from another "we should require some
more elaborate notation, since according to the present notation they must all be
specified by the same number of primes, namely, by the number of primes specifying

the energy-level of the unperturbed system from which they arise. Eor our present
purposes, however, this more elaborate notation is not required.
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values, then any linear combination of them, will also be
an eigen-j/f of JSq but will not be approximately equal to any eigen-^

of H. The problem of finding which eigen-^’s of Hq are approximately
equal to eigen-i/f’s of H is the analogue of the problem of secular

perturbations in classical mechanics.

Any eigen-j/f of Hq belonging to the eigenvalue jETq is expressible

as a linear combination of a complete set of such eigen -i/f’s. We shall

choose such a set consisting of the simultaneous eigen-j/f’s,

of Hq and a number of observables ^ that commute with Hq and with

each other and that together with Hq form a complete commuting set

of observables. Any eigen-j/f now expressible in the form

where the coefficients (^'|) are numbers forming a representative of

iIj{Hq). Any eigen-j/r 4^{H') of H, belonging to some eigenvalue H'
that lies close to H^^ is approximately equal to some ^{H'^ and is

therefore of the form

=
. (8)

where ifj^ is small. As in the non-degenerate case, we may assume
that ifj^ is orthogonal to each since if it is not it can be

exiDressed as the sum of two parts, one of which is orthogonal to the

while the other is a linear combination of them. We now
obtain with the help of (1), (2), and (3)

= S'{Sj. (r|)+«
or PiH'oi') FS^. HH'oS') «'!),

with neglect of the second-order term If we multiply this equa-

tion throughout by cf){HQ^") on the left, we shall again have the

term cf>{HQ^"){H '— vanishing and shall be left with

provided the iIj{Hq^') arc normalized. This result is the same as

(f'l) F|H;,f") (9)

where {Hq^'\V\Hq^") is an clement of the matrix representing V in

the {Hq, ^)-reprcsentatvion.

Equation (D) is of the form of the standard equation of the theory

of eigenvalues. It shows that H'—Hq is an eigenvalue of the matrix
3595 Y
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This matrix is a part- of the representative of the

perturbing energy F in a Heisenberg representation for the un-

perturbed system, namely the part consisting of those elements that

refer to the same unperturbed energy level for their row and

column. Each change of the energy-level H'^ caused by the per-

turbation is an eigenvalue of this matrix and further the eigen-

functions, namely the quantities (|^'|), are just the coefficients required

in (8) to give us those linear functions of the eigen-j/^’s of Hq belonging

to the eigenvalue H'q that are approximately eigen-j/<’s of H and

approximately represent stationary states of the perturbed system.

We have thus obtained to the first order the energy-levels and

stationary states of the perturbed system. It should be noticed that

these first-order results are independent of the values of all those

matrix elements of the perturbing energy which refer to two different

energy-levels and Hq of the unperturbed system.

One can use this perturbation method for the calculation of the

higher approximations if required. General recurrence formulas

giving the 7^-th order corrections in terms of those of lower order

have been obtained by Born, Heisenberg, and Jordan.*

§ 52. The Perturbation considered as causing Transitions

We shall now consider the second of the two perturbation methods

mentioned in § 50. We suppose again that we have an unperturbed

system governed by a Hamiltonian Hq which does not involve the

time explicitly, and a perturbing energy V which can now be an

arbitrary function of the time. The Hamiltonian for the perturbed

system is again H = H^-^V

.

For the present method it does not

make any essential difierence whether the energy-levels of the

unperturbed system, i.e. the eigenvalues of Hq, form a discrete or

continuous set. We shall, however, take the discrete case, for

definiteness.

We introduce an a-representation in which a complete set of com-
muting observables ol are diagonal, each of which is the value at
time t of some dynamical variable that is a constant of the motion
for the unperturbed system. This means that at time t commutes
with each of the a’s and is thus represented by a diagonal matrix

(a'lHola") = H', 8 ,.,..

* Zeits.f. Physik, vol. xxxv, p. 565 (1926).

(10 )
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If the phases of the representation are such that the Schrodinger

equation holds, we have, using stars to distinguish the rej)resentatives

in this case,

= Sc- (a'lHo+P'l^")*

= (11 )

For our present purpose, however, it is more convenient to choose

these phases to be those of the Heisenberg representation for the

undisturbed system, so that our representative {cx'\) of a state is

connected with the Schrodinger one (a'
|

)* by the relation

(c'D* = (12)

which was obtained at the end of § 38. The two representatives of

an observable will be connected in the same way by

The representative (10) of Hq is, of course, the same in either case,

since it is diagonal.

Our new representative (a'|) does not satisfy the Schrodinger

equation, of course, but satisfies instead the following equation,

obtained by substituting (12) in (11),

which reduces to

Ob

= i:^.(a'\V\oc") («"!). (
13

)

The Schrodinger representative (a'lFja")* of the perturbing energy

V does not depend on t, except in so far as V itself involves t explicitly,

while the representative (cv'l appearing in our equation (13)

varies ra^^idly with t, according to the Heisenberg law

when one neglects the explicit dependence of V on t.

Equation (13) is the fundamental equation of the present method

in perturbation theory. It is an exact equation, no use having yet

been made of the fact that the perturbation is small. It shows how

the representative of a state of a perturbed system varies with the

time when the representation is chosen so that the whole of this

variation is caused by the perturbation, and thus expresses most
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clearly the way in. which the perturbation may be considered as
causing a continual change in the state of the system. At any instant
the probability of the a’s having specified values oc is

P'=\{oc'\W^ (14)

provided P' is normalized.

We shall now obtain an approximate solution to equation (13) for
a given initial value of the representative (a'|) of the state. Since
V is small, the rate of change of (ot:'|) is small and (cv:'|) remains
approximately equal to its initial value, at any rate for times that
do not differ too much from the initial time. We can thus obtain
a first approximation by substituting for {oc"

|
)
in the right-hand side

of (13) its initial value and then performing a simple integration. We
may then obtain a second approximation by substituting the first

approximation in the right-hand side of (13), and so on indefinitely.
Let the initial value of (od'|), i.e. the value at time ^ = 0, be aQ{cx'),

or Uq say, for brevity. We shall then have in the first approximation
for the value of (a:'[) at an arbitrary time r,

(a'l)^ = [V'l V\oc"),a" dt
Jo

= +
say,.aj^ being the first-order correction, whose value at time r is

^0 (o^^^l Lja")^ dt. (15)
Jo

The second approximation at an arbitrary time T will now be

{a\)T = dr

where a-2 ,
the second-order correction, has the value at time T

o.%T ~ j* (od'l L|Q:"')^a'{^ dr

= — al
J^(Qi'|

F|a")^ (It fla"] F|a'"), di. (16)

The probabihty (14) of the a’s having the values a' at any time is
now, to the second order of accuracy,

=
<^'o^o+(^i^o+<^'o^i)+ (a2<^o+ aia^-f ..

,

= P^,-fPi+P2+...,
(
17

)
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Pq being the initial value of this probability and and Pg being

the first and second order corrections.

Suppose now that we are given, not the initial value a'^ of (a'|),

but only the initial probability Pq of the a’s having any specified

values a', and want to calculate the probability at any subseq[uent

time of the a’s having specified values. We now know only the
modulus of (a'|) and not its phase, so that we must average over all

phases. This averaging results in a considerable simplification in the
expression (17) for P', since this expression is bilinear in and
[both % ^2 being linear functions of according to (15) and
(16)], and thus consists of a sum of terms of the form ald"^. The
average of 0,^ 0/^ or ao(a")ao(a'") will vanish except when a"' — oc",

so that the only surviving terms will be those of the form a'^dQ. In
this way P^ reduces to

P'lT = «ir«0+«0«lT
Ct— {(x'\V\oL')^ dt d-o+Uy
Jo J

ijTi.d'Q
I
{(x\V\oL\dt

J 0 ]
= 0.

Similarly P'^ reduces to

P2 Y’ (^2 'I' ^^'0 X 'V 7’^ ~ ^'0 ^2T

\\ol'\V\oc")^0^t
fVi Fla), dt+

Jo Jo

(a'|F|a"), dt,
0

use being made, in dealing with the third term, of the fact that the

matrix (a'| V\(x") is Hermitian. If we interchange t and 7- in this third

term, we can combine it with the first term to give

\a
I

. 2„.r f
\l-r [dl 1 f

'<U
f
'rfri (a'

I

F

1

a"), (a"
I

F

1

a'

=

LJ 0 Jo Jo Jo J

[
V f Fla"), (a''|F|a'),

J 0 J 11

7v'| l'|a"), dt
o
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Thus OTir expression for P'^ becomes

ol"} fViFI
U 0

a."), dt

fibndL t)li0 probsjbility JP^ of the od’s hs/ving the Vcilucs oc is, to the second

IJc'l Fh" )t M (18 )

order of accuracy,

This result is capable of a simple interpretation. If we suppose

that initially the a’s certainly have the values a ,
so that Pq = 1,

= 0 for aVa", (in which special case the averaging over the

phases of the a^s is not necessary), then the right-hand side of (18)

reduces to the single term

dt = P{oc''ol') (
19 )IjTi^ .

II J«'|
Y\oc''),

say. This may be interpreted as the probability of the system making

a transition from the state a." to the state ol' under the influence of

the perturbation V during the interval of time 0 to T. It is sym-

metrical between oc and oc"

.

Returning now to the general case, we

see that (18) may be regarded as expressing that the change in the

probability of the olS having the values ol during the time interval

0 to T, namely Py—

P

q, is made up of the total probability

Xq,- PQP(a"a') of the system jumping into the state oc' from some

other state a", minus the total probability Pq Sa" P(oc'oc") of its jump-

ing out of the state oc', during this time interval. Thus the ordinary

laws of probability apply, showing that there is no interference

between the different transition processes. If we had not averaged

over the initial phases, then there would have been such interference.

The integrand in (19) is the representative in a certain representa-

tion of the perturbing energy at time t. This representation is one

that does not depend very much on t, since if we put y == 0 it would
become the Heisenberg representation and would not dej)end on t at

all- Hence we can, without spoiling the order of accuracy of our

result, replace the integral in (19) by and obtain an

alternative expression for the transition probability

P(a"a') = 1/^2
,

11
Vi

“.
(20 )
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This provides a simple physical meaning for the non-diagonal ele-

ments of the matrix representing an observable when this observable
can be regarded as the time integral of a j^erturbing energy.

§ 53. Application to Radiation
In the preceding section a general theory of the perturbation of an
atomic system was developed, in which the perturbing energy could
vary with the time in an arbitrary way. A perturbation of this kind
can be realized in practice by allowing incident electromagnetic

radiation to fall on the system. Let us see what our result (19) or (20)

reduces to in this case.

If we neglect the effects of the magnetic field of the incident radia-

tion, and if we further assume that the wave-lengths of the harmonic
components of this radiation are all large compared with the dimen-
sions of the atomic system, then the perturbing energy is simply the

scalar product
F-(D, ^), (21)

where D is the total electric displacement of the system and S is

the electric force of the incident radiation. We suppose S to be a

given function of the time. If we take for simplicity the case when
the incident radiation is })lane polarized with its electric vector in

a certain direction and let D denote the ( -ai'tesian component of D
in this direction, the expression (21) for V reduces to the ordinary
j)roduct

V -= DS,

where 8 is the magnitude of the vector <§“. The matrix elements
of F are

(a'lF|a") = (od'|r>>la:")6',

since (S' is a number. Now {(x'\l)\cx") varies with the time t according
to the Heisenberg law

(oi'|X)|Q;")Q being constant, and hence our expression (19) for the
transition j^robability becomes

P{cx'a") = |(Q:'|,D|a")|2 1 dt
J 0

(22 )

If the incident radiation during the time interval 0 to T is resolved
into its Fourier components, the energy crossing unit area per unit
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frequency range about the frequency v will be, according to classical

electrodynamics,

= c/277-.

* iji

J

2

(23)

Comparing this with (22), we see that the transition probability

between two states oc and ol" with energies H'q and Hq depends on
that Fourier component of the incident radiation whose frequency is

V = 1^0— agreement with Bohr’s theory. The magnitude
of this transition probabihty is connected with the intensity of the
Fourier component through the relation

P(aV') = 277-/c/i2. \{oc'\D\cx")\^E^. (24)

This relation gives the probabihty of the system, if initially in the
state of lower energy, of absorbing radiation and being carried to

the upper state, and if initially in the upper state, of being stimulated

by the incident radiation to emit and fall to the lower state. The
present theory does not account for the fact that the system, if in

the upper state with no incident radiation, can emit spontaneously
and fall to the lower state.

The existence of the phenomenon of stimulated emission was in-

ferred by Einstein,* long before the discovery of quantum mechanics,
from a consideration of thermodynamic equilibrium between atoms
and a field of black-body radiation satisfying Planck’s law. Einstein
showed that the transition probability for stimulated emission must
equal that for absorption between the same pair of states and deduced
a relation connecting this transition probability with that for spon-
taneous emission. Heisenberg’s assumption for the spontaneous
emission probabihty, given in § 38, together with Einstein’s theory,
will therefore provide us with values for the transition probabilities
for absorption and stunulated emission. These values are in agree-
ment with (24). Thus the theory of the present section gives a partial
justification for Heisenberg’s assumption. The complete justification
wiU be provided by the general theory of Chapter XII, in which the
electromagnetic field will be treated as a dynamical system inter-
acting with the atom according to the laws of quantum mechanics.
This general theory will not only confirm the result (24) for absorp-
tion and stimulated emission, but will also give the required value
for the spontaneous emission probability.

* Einstein, Phys. Zeits., vol. xviii, p. 121 (1917).
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§ 54. Transitions caused by a Perturbation Independent of

the Time
The perturbation method of § 52 is still valid when the perturbing
energy V does not involve the time t explicitly. Since the total

Hamiltonian H in this case does not involve t explicitly, we could
now, if desired, deal with the system by the perturbation method of

§51 and find its stationary states. Whether this method would be
convenient or not would depend on what we want to find out about
the system. If what we have to calculate makes an explicit reference

to the time, e.g. if we have to calculate the wave function at one
time when we are given its value at another time, the method of § 52

would be the more convenient one.

Let us see what the result (19) for the transition probability

becomes when V does not involve t explicitly. The matrix element

(a'
I

V\oc") now varies with t according to the Heisenberg law and thus
its time integral is

[\oc'\ V\oc"\ dt = {oc'\ FU")o [ dt
Jo Jo

provided Thus the transition probability (19) becomes

P{oi'<x") = Ka'I V\cx")[^ l]/(^;^__if")2

= 2|((x'| VlyW [1- (25)

If Hq differs appreciably from H' this transition probability is

small and remains so for all values of T. This result is required by
the law of the conservation of energy. The total energy H is constant

and hence the proper-energy Hq {i.e. the energy with neglect of the

part V due to the perturbation), being approximately equal to H,
must be approximately constant. This means that if Hq initially has

the numerical value ', at any later time there must be only a small

probability of its having a numerical value differing considerably

from Hq.

On the other hand, when the initial state a' is such that there

exists another state oc" having the same or very nearly the same
proper-energy Hq, the probability of a transition to the final state

a." may be quite large. The case of physical interest now is that in

which there is a continuous range of final states a." having a con-
3595 7.
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tinuous range of proper-energy levels passing through the value
Hq of the proper-energy of the initial state. The initial state must
not be one of the continuous range of final states, but may be either

a separate discrete state or one of another continuous range of states.

We shall now have, remembering the rules of § 28 for the interpreta-

tion of probability amplitudes with continuous ranges of states, that,

with P{olol') having the value (25), the probability of a transition to

a final state within the small range a" to oc' doc" will be P{(x a") doi!'

when the initial state a' is discrete and will be proportional to this

quantity when a! is one of a continuous range.
We may suppose that the a’s describing the final state, which are

any complete set of commuting dynamical variables that all com-
mute with Hq, consist of Hq itseK together with a number of other

dynamical variables (The yS’s need have no meaning for the initial

state a'.) We shall suppose for definiteness that the jS’s have only
discrete eigenvalues. The total probability of a transition to a final

state a" for which the yS’s have the values and Hq has any value,

(there will be a strong probability of its having a value near the
initial value Hq,) will now be (or be proportional to)

I
?(o!'a") dHl =
== 2

[ dHl (
26 )

J — 00

poo

= 2Tlh. \{a.'\V\Hl+}ixlT,P'')\^[l—cosxyx^.dx

if one makes the substitution {H'^—HQ)TJh = x. For large values
of T this reduces to

jH .\{pl\V\Hq^'')\^ f [1

—

co^x^x^ .dx
J — OO

= 27rTin.\{oL'\V\H'^^")\K (27 )

Thus the total probability up to time T of a transition to a final
state for which the ^’s have the values jS" is proportional to T

.

There
is therefore a definite probability coefficient, or probability pei* unit
time, for the transition process under consideration, having the value

277/^ . \{a'\ V\H'Qn\^.
(28 )

It is proportional to the square of the modulus of the matrix element,
assoeiated with this transition, of the perturbing energy.
In order that the approximations used in deriving (27) may be
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valid, the time T must be not too small and not too large. It must

be large compared with the periods of the atomic system in order

that the evaluation of the integral (26) leading to the result (27) may
be correct, while it must not be excessively large or else the general

formula (19) will break down. In fact one could make the probability

(27) greater than unity by taking T large enough. The upper limit

to T is fixed by the condition that the probability (19) or (27) must
be small compared with unity. There is no difficulty in T satisfying

both these conditions simultaneously provided the perturbing energy

V is sufficiently small.

§55. The Anomalous Zeeman Effect

One of the simplest examples of the perturbation method of § 51 is

the calculation of the change in the energy-levels of a general atom

caused by a uniform magnetic field. The problem of a hydrogen

atom in a uniform magnetic field has already been dealt with in § 48

and was so simple that perturbation theory was unnecessary. The

case of a general atom is not much more complicated when we make
a few approximations such that we can set up a simple model for

the atom.

We first of all consider the atom in the absence of the magnetic

field along the lines indicated in § 49 and look for angular momenta
that are constants of the motion. The total angular momentum of

the atom, the vector j say, is certainly a constant of the motion.

This angular momentum may be regarded as the sum of two parts,

the total orbital angular momentum of all the electrons, 1 say, and

the total spin angular momentum, s say. Thus we have j = l+ s.

Now the effect of the spin magnetic moments on the motion of the

electrons is small compared with the effect of the Coulomb forces and

may be neglected as a first approximation. With this approximation

the spin angular momentum of each electron is a constant of the

motion, there being no forces tending to change its orientation. Thus

s, and hence also 1, will be constants of the motion. We now have

the three constant angular momenta 1, s, and j, related in the same

way as the m, p, and M of § 49. The magnitudes, Z, s, and j say, of

these angular momenta will be given by

I _ (Z2_p^2_|_/2_pp.2)i

J -
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corresponding to equation (12) of Chapter VIII, and from (36) of

that chapter we see that with given numerical values for I and s the
possible numerical values for j are

Z+5—p, . .
.
\l—s\ H-p.

Let us consider a stationary state for which I, s, and ji have definite

numerical values in agreement with the above scheme. The energy of

this state will depend on I, but one might think that with neglect

of the spin magnetic moments it would be independent of s, and also

of the direction of the vector s relative to 1, and thus of j. It will

be found in Chapter XI, however, that the energy depends very much
on the magnitude s of the vector s, although independent of its

direction when one neglects the spin magnetic moments, on account
of certain phenomena arising from the fact that the electrons are

indistinguishable one from another. There are thus different energy-

levels of the system for each different value of I and s. This means
that I and s are functions of the energy, according to the general

definition of a function given in § 15, since the I and s of a stationary

state are fixed when the energy of that state is fixed.

We can now take into account the effect of the spin magnetic
moments, treating it as a small perturbation according to the method
of § 51. The energy of the unperturbed system will still be approxi-
mately a constant of the motion and hence I and s, being functions
of this energy, will still be approximately constants of the motion.
The directions of the vectors 1 and s, however, not being functions
of the unperturbed energy, need not now be approximately constants
of the motion and may undergo large secular variations. Since the
vector j is constant, the only possible variation of 1 and s is a pre-
cession about the vector j. We thus have an approximate model of
the atom consisting of the two vectors 1 and s of constant lengths
processing about their sum j ,

which is a fixed vector. The energy is

determined mainly by the magnitudes of 1 and s and depends only
slightly on their relative directions, specified by j. Thus states with
the same I and s and different j will have only slightly different
energy-levels, forming what is called a muUiplei term.

Let us now suppose our atom to be subjected to a uniform magnetic
field of magnitude in the direction of the 2:-axis. The extra energy
due to this magnetic field will consist of a term

eJ^I2mc . (mg-j-^a^;), (29)
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like the last term in equation (34) of Chapter VIII, contributed by
each electron, and will thus be altogether

ej¥l2mc.X = eJ^I2mc.{l^-{-2s^) — eJ=f-l2mo.{j^-\-s^. (30)

This is our perturbing energy F. We shall now use the method of

§ 51 to determine the changes in the energy-levels caused by this F.

The method will be legitimate only provided the field is so weak
that F is small compared with the energy differences within a

multiplet.

Our unperturbed system is degenerate, on account of the direction

of the vector j being undetermined. We must therefore take, from
the representative of F in a Heisenberg representation for the

unperturbed system, those matrix elements that refer to one par-

ticular energy-level for their row and column, and obtain the eigen-

values of the matrix thus formed. We can do this best by first

splitting up F into two parts, one of which is a constant of the

unperturbed motion, so that its representative contains only matrix

elements referring to the same unperturbed energy-level for their

row and column, while the representative of the other contains only

matrix elements referring to two different unperturbed energy-levels

for their row and column, so that this second part does not affect the

first-order perturbation. The term involving in (30) is a constant

of the unperturbed motion and thus belongs entirely to the first part.

For the term involving we have

O'l+iJ+il) == js jz^x)jx~^i^^zjy 3s^y)3y

or

<5. -w )
- -w )+ (^^~wy\

j ifi
2^yy3x 'Yxjyl’

, . . (31)

where

Vx = ^z3y ^y ~h’‘^y — h'9^—Ls
J

yy ^^jz^x— ^zJx = b: ^x

The first term in this expression for is a constant of the unperturbed

motion and thus belongs entirely to the first part, while the second

term, as we shall now see, belongs entirely to the second part.

Corresponding to (32) we can introduce
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It can now easily be verified that

jxYx'^jy'Yy'^jzYs ^
and that

yJ = Yjr Uz’ yy\ = —rx> Uz’ yj =
These relations are of the same form as the relations (3), (4), and (5)

of Chapter VIII, so that our y^., y^ are connected with the angular

momentum j in the same way in which the x, y, z of Chapter VIII

were connected with the angular momentum m. We can thus take

over the analysis of § 47, in which the condition was obtained for the

non-vanishing of a matrix element of x, y, and ^ in a representation

in which h is diagonal. We find in this way that the only non-

vanishing matrix elements of y^, yy, and y^ in a representation in

which j is diagonal are those referring to transitions in which j

changes by ±^. The coefficients of y^ and yy in the second term on

the right-hand side of (31) commute with J, so that the representative

of the whole of this term will contain only matrix elements referring

to transitions in which J changes by ±^, and thus referring to two

different energy-levels of the unperturbed system.

Hence the perturbing energy V becomes, when we neglect that

part of it whose representative consists of matrix elements referring

to two different unperturbed energy-levels.

(33)

The eigenvalues of this give the first-order changes in the energy-

levels. We can make the representative of this expression diagonal

by choosing our representation such that is diagonal, i.e. by taking

the fundamental states to be spacially quantized in the ^-direction.

The expression (33) then gives us directly the first-order changes in

the energy-levels caused by the magnetic field. This expression is

known as Lande’s formula.

The result (33) holds only provided the perturbing energy V is

small compared with the energy differences within a multiplet. For
larger values of F a more complicated theory is required. For very

strong fields, however, for which F is large compared with the energy

differences within a multiplet, the theory is again very simple. We
may now neglect altogether the energy of the spin magnetic moments
for the atom with no external field, so that for our unperturbed
system the vectors 1 and s themselves are constants of the motion,
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and not merely their magnitudes I and s. Our perturbing energy F,

which is still eJ¥-l2mc.{j^-\-s^), is now a constant of the motion for

the unperturbed system, so that its eigenvalues give directly the

changes in the energy-levels. These eigenvalues are integral or half-

odd integral multiples of eJ=flil2mc according to whether the number
of electrons is even or odd.
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COLLISION PROBLEMS

§56. General Remarks
In this chapter we shall investigate problems connected with a
particle which, coming from infinity, encounters or ‘collides with’

some atomic system and, after being scattered through a certain

angle, goes off to infinity again. The atomic system which does the

scattering we shall call, for brevity, the scatterer. We thus have a
dynamical system composed of an incident particle and a scatterer

interacting with each other, which we must deal with according to

the laws of quantum mechanics, and for which we must, in particular,

calculate the probability of scattering through any given angle. This
problem was first solved by Born by a method substantianally

equivalent to that of the next section. We must take into account
the possibility that the scatterer, considered as a system by itself, may
have a number of different stationary states and that if it is initially

in one of these states when the particle arrives from infinity, it may
be left in a different one when the particle goes off to infinity again.

The colliding particle may thus induce transitions in the scatterer.

The Hamiltonian for the whole system of scatterer plus particle

will not involve the time explicitly, so that this whole system will

have stationary states represented by periodic solutions of Schro-
dinger’s wave equation. The meaning of these stationary states

requires a little care to be properly understood. It is evident that
for any state of the system the particle will spend nearly all its time
at infinity, so that the time average of the probability of the particle

being in any finite volume will be zero. Now for a stationary state

the probability of the particle being in a given finite volume, like

any other result of observation, must be independent of the time,
and hence this probability will equal its time average, which we have
seen is zero. We shall thus be interested only in the relative proba-
bilities of the particle being in different finite volumes, their absolute
values being all zero. Mathematically we have that if the if/ denoting
a stationary state is normalized correctly for physical interpretation,
i.e. such that = I, and if we let Q denote that observable, which
is a certain function of the position of the particle (at a given time),
that is equal to unity if the particle is in a given finite volume and
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zero otherwise, then = 0, meaning that the average value of Q,

i.e. the probability of the particle being in the given volume, is zero.

It would therefore be more convenient for us to denote the stationary

state by a ^ normalized to infinity, i.e. for which = co, the infinity

being such as to make 4>QiJj finite. This finite would then give

the relative probability of the particle being in the given volume.

In x)icturing a state of a system denoted by a j/r which is not

normalized correctly for physical interpretation, but for which <f>ip
— n

say, it may be convenient to suppose that we have n similar systems

all occupying the same space but with no interaction between them,

so that each one follows out its own motion indejiendently of the

others. We can then interpret <f>onlj, where a is any observable,

directly as the total a for all the n systems. In ax^plying these ideas to

the above-mentioned ijj normalized to infinity, denoting a stationary

state of the system of scatterer plus colliding particle, we should

picture an infinite number of such systems with the scatterers all

located at the same point and the particles distributed continuously

throughout sjoace. The number of particles in a given finite volume

would be pictured as Q being the observable defined above,

which has the value unity when the ])article is in the given volume
and zero otherwise. If the ijj is i*e])resentecl l)y a Schrcklinger wave
function involving the (^artesian co-ordinates of tlio ])article, then

the square of the modulus of the wave function could be interjyreted

directly as the density of |)articles in the picture. One must rcTnem-

ber, however, that each of the.se particle,s has its own individual

scalterer. Oifierent x)articles may belong to scatterers in different

states. There will thus be one particle density for each state of the

scatterer, namely, the density of those ])articles belonging to scat-

terers in that state. This is taken account of l)y the wave function

involving variables describing the state of the scatterer in addition

to those describing the |)osition of the jyarticle.

For determining scattering coefficients we have to investigate

stationary states of the whole system of scatterer x)lus jiarticle. For
instance, if we want to determine the j:)rol)ability of scattering in

various directions when the scatterer is initially in a given stationary

state and the incident ])article has initially a given velocity in a given

direction, we must investigate that stationary state of the whole

system whose joicture, according to the above method, contains at

great distances from the jioint of location of the scatterers only

A a
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particles moving witb. the given initial velocity and. direction and

belonging eacb to a scatterer in the given initial stationary state,

together with particles moving outward from the point of loca-

tion of the scatterers and belonging possibly to scatterers in various

stationary states. This picture corresponds closely to the actual state

of affairs in an experimental determination of scattering coefficients,

with the difference that the picture really describes only one actual

system of scatterer plus particle. The distribution of outward moving

particles at infinity in the picture gives us immediately all the

information about scattering coefficients that could be obtained by

experiment. For practical calculations about the stationary state

described by this picture one may use the perturbation method of

§ 51, taking as unperturbed system, for example, that for* which there

is no interaction between the scatterer and particle.

In dealing with colhsion problems, a further possibility to be taken

into consideration is that the scatterer may perhaps be capable of

absorbing and re-emitting the particle. This possibility arises when
there exists one or more states of absorption of the whole system, a

state of absorption being an approximately stationary state which, at

a certain time, is closed in the sense of § 45 {i.e. the probability of

the particle being at a greater distance than r from the scatterer

tends to zero as oo). Since a state of absorption is only approxi-

mately stationary, its property of being closed will be only a transient

one and after a sufficient lapse of time there will be a finite probability

of the particle being on its way to infinity. Physically this means
there is a finite probability of spontaneous emission of the particle.

The fact that we had to use the word ‘ approximately ’ in stating the

conditions required for the phenomena of emission and absorption to

be able to occur shows that these conditions are not expressible in

exact mathematical language. One can give a meaning to these

phenomena only when one is using a perturbation method. They
occur when the imperturbed system (of scatterer plus particle) has
stationary states that are closed. The perturbation now spoils the
stationary property of these states and gives rise to spontaneous
emission and its converse absorption.

For calculating absorption and emission probabilities it is necessary
to deal with non-stationary states of the system, in contradistinction
to the ease for scattering coefficients, so that the perturbation method
of § 52 must be used. Thus for calculating an emission coefficient
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we must consider the non-stationary states of absorption described

above. Again, since an absorption is always followed by a re-emission,

it cannot be distinguished from a scattering in any experiment in-

volving a steady state of affairs, corresponding to a stationary state

of the system. The distinction can he made only by reference to a
non-steady state of affairs, e.g. by use of a stream of incident particles

that has a sharp beginning, so that the scattered particles will appear
immediately after the incident particles meet the scatterers, while
those that have been absorbed and re-emitted will begin to appear
only some time later. This stream of particles would then be the
picture of a certain non-stationary xfj, normalized to infinity, which
could be used for obtaining the absorption coefficient.

§ 57. The Scattering Coefficient

We shall now consider the calculation of scattering coefficients, taking

first the case when there is no absorption and emission, which means
that our unperturbed system has no closed stationary states. We
may conveniently take this unperturbed system to be that for which
there is no interaction between the scatterer and particle. Its

Hamiltonian will thus be of the form

i/o - W,
(
1 )

where is that for the scatterer alone and W that for the particle

alone, namely
IF-:. l/2m.(pj--fp,j;-hp|). (2)

'The perturbing energy V, assumed small, will now be a function of

the Cartesian co-ordinates of the particle x, y, z and also, perhaps,

of its momenta 'Py, together with dynamical variables describ-

ing the scatterer.

Since we are now interested only in stationary states of the whole
system, we can use the x)erturbation method of § 51. Our unper-

turbed system now necessaiily has a continuous range of energy-

levels, since it contains a free particle, and this gives rise to certain

modifications in the perturbation method. The question of the change

in the energy-levels caused by the perturbation, which was the main
question of § 51, no longer has a meaning, and the convention in § 51

of using the same number of primes to denote nearly equal eigen-

values of Hq and H now droj3s out. Again the problem of secular

X^erturbations cannot now arise, since if the unperturbed system is

degenerate the perturbed one, which must also have a continuous
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range of energy-levels, will also be degenerate to exactly the same

extent. Any eigen-j/f of the unperturbed Hamiltonian Hq, belonging

to the eigenvalue say, will be approximately equal to some

eigen-i/f of H, and indeed to each of an infinity of eigen-j/#’s of H
belonging to a small range of eigenvalues H' approximately equal to

Hq. (The meaning of two j/f-symbols being approximately equal can-

not be accurately defined in the case of continuous eigenvalues with-

out a more rigorous theory than that aimed at in the present work.

It should be noticed, though, that this meaning is such that two

eigen-i/r’s of an observable belonging to two nearly equal eigen-

values may be approximately equal, in spite of the fact that they

are orthogonal.)

We again express the stationary state of the perturbed

system as the sum of an eigen-i/f of the unperturbed Hamil-

tonian and a small correction j/f^. We can no longer, however, take

to be orthogonal to as in equation (5) of § 51. The reason

for this is that when we introduce our as in equation (4) of § 51

and then express this as the sum of two parts, one a numerical

multiple of and the other orthogonal to these parts

may both be large, in the case of continuous eigenvalues H', in spite

of their sum being small. For example, these parts could be re-

spectively of the form and — Thus we cannot

have our both small and orthogonal to and we prefer to have

it small. To make up for this lack of simplicity in we can now
take exactly equal to H'

.

Let us call this number H', or H'

,

equal to the energy of the stationary state we are seeking, E. We
now have the equation

= VrP{H') (3)
which gives

V^H')
or {E-H,- 17)^1 = (4)

from (1), with neglect of the second-order term We shall use

this equation (4) for determining the stationary states of the per-

turbed system to the first order.

Let a denote a complete set of commuting variables describing the

scatterer, which are constants of the motion when the scatterer is

alone, and may thus be used for labeUing the stationary states of the
scatterer. This requires that shall commute with the a’s and be
a function of them. We can now take a representation of the whole
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system in which, the a’s and x, z, the co-ordinates of the particle,

are diagonal. This will make diagonal. Let ^{Hq) be represented

by (cca|0) and by (:rck:|l), the single variable x being written in

the wave function to denote x, y, and z. In the same way the
single differential dx will .be written to denote the product dxdydz.

Equation (4), written in terms of representatives, becomes, with the
help of (2),

{E—H^{cx')^K^l2m.V^}{xoc'\l) = \ {xoi'\V\x"oL'') dx" {x"ol"\0). (5)

Suppose that the incident particle has the momentum p® and that
the initial stationary state of the scatterer is a®. The stationary

state ^{Hq) of our unperturbed system is now the one for which

p = po and (X = and hence its representative is of the form

(x(x\0) --=
(6)

This makes equation (5) reduce to

{E—H^.{oc')-i-E^/2m.S/^}{xcx'\l) == j {x(x'\V\xV) dx^

or V2}(a:a
1 1) = F, (7)

where = 2ml7h^ . {E— H^ioc.')} (8)

and F = 2w//r^ . J {xoi'\ V\x^oi7^) dx^ ei(p“» (9)

a definite function of x, y, z, and oc'. We must also have

E ^ //,.(cx‘')+p<‘‘72m. (10)

Our problem now is to obtain a solution (a;a'|l) of (7) which, for

values of x^ y, z denoting points far from the scatterer, represents

only outward moving particles. The square of its modulus, |l)l^

will then give the density of scattered i)articles belonging to scatterers

in the state ol' when the density of the incident particles is |(a;cx|0)|‘^,

which is unity. If we transform to polar co-ordinates r, Q, equa-

tion (7) becomes

2 d
h'" ~\- o “I 77 |-

dr“ r dr

1 a
. ^ a

r“sin 6 dd 36

Now F must tend to zero as oo, on account of the jihysical fact

that the interaction energy between the scatterer and particle must
tend to zero as the distance between them tends to infinity. If we
neglect F in (11) altogether, an approximate solution for large r is

{recl>oc'\l) =:
(
12 )

where u is an arbitrary function of 6, </>, and a', since this expression

substituted in the left-hand side of (11) gives a result of order r~^.

When we do not neglect F, the solution of (11) will still be of the
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form (12) for large r, provided F tends to zero sufficiently rapidly as

r—>cxD, but the function u will now be definite and determined by

the solution for smaller values of r.

For values a' of the ex’s such that defined by (8), is positive,

the Ic in (12) must be chosen to be the positive square root of in

order that (12) may represent only outward moving particles, i.e.

particles for which the radial component of momentum repre-

sented by —iUdjdr, has a positive value. We now have that the

density of scattered particles belonging to scatterers in state oc', equal

to the square of the modulus of (12), falls off with increasing r

according to the inverse square law, as is physically necessary, and

their angular distribution is given by \u{d^oL')Y‘. Further, the magni-

tude, F' say, of the momentum of these scattered particles is equal

to TcH^ since the exponential in (12) must be of the form so that

their energy is equal to

2m
hV
2m

with the help of (8) and (10). This is just the energy of an incident

particle, namely p^‘^/2m, reduced by the increase in energy of the

scatterer, namely £rg(a')—Hg(a°), in agreement with the law of con-

servation of energy. For values ol of the a’s such that kr is negative

there are no scattered particles, the total initial enei'gy being insuffi-

cient for the scatterer to be left in the state a .

We must now evaluate uid^a!) for a set of values ol for the oc’s

such that Ic^ is positive, and obtain the angular distribution of the

scattered particles belonging to scatterers in state a'. It is sufficient

to evaluate u for the direction ^ = 0 of the pole of the polar co-

ordinates, since this direction is arbitrary. We make use of (Jreeii’s

theorem, which states that for any two functions of position A and

JB the volume integral J dx taken over any voluine

equals the surface integral J (AdBjdn—BdAjdn) dS taken over the

boundary of the volume, djdn denoting differentiation along the

normal to the surface. We take

A = B = {r6(f)a'\ 1)

and apply the theorem to a large sphere with the origin as centre.

The volume integrand is thus
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from (7) or (11), while the surface integrand is, with the help of (12),

e-^A:rcos0 g-i/cr cos

0

dr

— Q—ikrcQS 6

T

dr

1 ik\ u— H __ ^ikrj^ 0 Q-ikrcos d
<<5 ' /V* / ‘

= ikujr

with neglect of r-^. Hence we get

I
g-i/crcos0

{

277- Ctt

dcf> r^ sin 6 dO . iku Jr . (1+cos ^)e77cr(i-cos0)

0 Jo

P^TT pa
ikr I d<f> dy .u{6^(x'){2— y)e^'*»’y,

Jo Jo

where y = 1—cos0, the volume integral on the left being taken over
the whole of space. The right-hand side becomes, on being integrated
by parts with respect to y.

2ii*7T f
*” 2S 2

d<^\ u{dcl>cx')(2—
«. 0 \ ^ V = 0

JLy . e^^^y— [u{9(f>oc'){2—y)]

The second term in the { } brackets is of the order of magnitude of
r-^, as would be revealed by further partial integrations, and may,
therefore be neglected. We are thus left with

J
Q- ikrooHd JP d<j} u{0<^(x') — 4-Tr'li{0(f)oc )

,

0.giving the value of u{6cf>(x') for the direction 6

This result may be written

'u{0(j>ci) — — 1/477. J (13)

since P' = kTi. If the vector p' denotes the momentum of the

scattered electrons coming off in a certain direction (and is thus of

magnitude P'), the value of u for this direction will be

u{9'4>'<x') = — l/47T.Je-'(P'*^)/'''PcZ.r,

as follows from (13) if one takes this direction to be the pole of the
polar co-ordinates. This becomes, with the help of (9),

u{9'cf>'a') = — m/277/Z2. fj dx (a;a'| V\x^aP)dx^

= — 27Tryi}h {p'ol\V\‘P^ol^), (14)

when one makes a transformation from the co-ordinates x to the

momenta p of the particle, using the transformation function (36)

of Chapter VI. The single letter p is here used to denote the three

components of momentum.
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The density of scattered particles belonging to scatterers in state

oc' is now given by fr^. Since their velocity is P'/m, the

rate at which these particles appear per unit solid angle about the

direction of the vector p' will be P'/m .
\u{d'(j>'oc')[K The density of

the incident particles is, as we have seen, unity, so that the number

of incident particles crossing unit area per unit time is equal to their

velocity po/m where P^ is the magnitude of p®. Hence the effective

area that must be hit by an incident particle in order to be scattered

in a unit solid angle about the direction p' and then belong to a

scatterer in state oc' will be

P'/PO. \u{d'cj>'oc')f = 4.7T^m^h^-P'/P^ . |(p'a:'l (15)

This is the scattering coefficient for transitions —> oc' of the scatterer.

It depends on that matrix element (p'a'j of the perturbing

energy F whose column and whose row p'a refer respectively

to the initial and final states of the unperturbed system, between

which the scattering transition process takes place. The result (15) is

thus in some ways analogous to the result (19) or (20) of Chapter IX,

although the numerical coefficients are different in the two cases,

corresponding to the different natures of the two transition ])rocesses.

§ 58. Solution with the p -Representation

The result (15) for the scattering coefficient makes a reference only

to that representation in which the momentum p is diagonal. One

would thus expect to be able to get a more direct proof of the result

by working all the time in the p-representation, instead of working

in the cr-representation and transforming at the end to the p-repre-

sentation, as was done in § 57. This would not at first sight appear

to be a great improvement, as the lack of directness of the :r-repre-

sentation method is offset by its greater ‘ Anschauliehkeit ’, it being

possible to picture the square of the modulus of the .x-repiesentative

of a state as the density of a stream of particles in process of being

scattered. The cr-representation method has, however, other more

serious disadvantages. One of the main applications of the theory

of collisions is to the case of photons as incident particles. Now a

photon is not a simple particle but has a polarization. It is evident

from classical electromagnetic theory that a photon with a definite

momentum, i.e. one moving in a definite direction with a definite

frequency, may have a definite state of polarization (linear, circular,
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&c.), while a photon with a definite position, which is to he pictured

as an electromagnetic disturbance confined to a very small volume,
cannot have any definite polarization. These facts mean that the

polarization observable of a photon commutes with its momentum
but not with its position. This results in the ^-representation method
being immediately applicable to the case of photons, it being only
necessary to introduce the polarizing variable into the representatives

and treat it along with the a’s describing the scatterer, while the

a:-representation method is not applicable. Further, in dealing with
photons it is necessary to take the relativity variation of mass with
velocity into account. This can easily be done in the p-representation

method, but not so easily in the ic-representation method.
Equation (4) still holds when the relativity variation of mass with

velocity is taken into account for the particle, but JV is now given by

== (16)

instead of by (2). Written in terms of -representatives, equation (4)

becomes

= X,.S(pcc'lVlpV) dp" (pV|0),

W being here understood as a definite function of p^, Py, p^ given by
(16). This may be written

{W'-W}(pa.'\\) = X^^(poc'\V\p"cc")dp" (17)

where W = (18)

and is the energy required by the law of conservation of energy for

a scattered particle belonging to a scatterer in state ex'

.

The jp-repre-

sentative of obtained by transforming (6) with the trans-

formation function (36) of Chapter VI, is

(pajO) = (19)

as may be verified most easily by transforming this back to the

a’-representation. The S(^—p®) means the product

HPx—Px) ^(Py—Py) KPz—Pz)-
Equation (17) now becomes

{W' ~~--W]{pa\l) h:i{pcx'\V\p^oc^). (20)

We now make a canonical transformation from the Cartesian co-

ordinates p^., Py, p^ of p to its polar co-ordinates P, co, y, given by

p.j. == P cos 6t> Py ~ P sin CO cos y p^ = P sin co sin y

.

If in the new representation we take the weight function P^sinco,

then the weight attached to any volume of p-space will be the same
3595 3
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as in the previous ^-representation, so that the canonical transforma-

tion will mean simply a relabelling of the rows and columns of the

matrices without any alteration of the matrix elements or of the set

of numbers representing a state. Thus (20) will become in the new
representation

{W'- lF}(Pa>xa ll) = h^Pcox^'l (21)

W being now a function of the single variable P.

The coefficient of {Pcoxoc'\), namely {W'— W}, is now simply a

multiplying factor and not a differential operator as it was with the

aj-representation method. We can therefore divide out by this factor

and obtain an explicit expression for {Pcx}xoc\^)- When, however, a'

is such that W', defined by (18), is greater than mc^, this factor will

have the value zero for a certain point in the domain of the variable

P, namely the point P=P', given in terms of W' by (16). The
function (Pcoxa'll) will then have a singularity at this i^oint. This

singularity shows that (Pcoxoi.'\) represents an infinite number of

particles moving about at great distances from the scatterers with

energies indefimtely close to W' and it is therefore this singularity

that we have to study to get the angular distribution of the particles

at infinity.

The result of dividing out (21) by the factor {W'— IF} is

(Pcox^ ll) = ^^(Pcoxa'l FlP0a>V«^)/{^^'— l^^}+ A(coxa')S( IF'-- W),

. . . (
22 ;

where A is an arbitrary function of od, x a.nd a
,
since when an arbitrary

multiple of S(TF'— IF) is multiplied by IF'— TF the product will

vanish. To give a meaning to the first term on the right-hand side

of (22), we make the convention that its integral with respect to P
over a range that includes the value P' is the limit when e —> 0 of

the integral when the small domain P '— e to P'-f-e is excluded from
the range of integration. This is sufficient to make the meaning of (22)

precise, since we are interested effectively only in the integrals of the
representatives of states when the representation has continuous
ranges of rows and columns. We see that equation (21) is inadequate
to determine the representative (Pcoxa'll) completely, on account of
the arbitrary function A occurring in (22). We must choose this A
such that (Pajx(^'[l) represents only outward moving particles, since
we want the only inward moving particles to be those represented
by (19).
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Let US take first the general case when the representative {Pcx)x\)

of a state of the particle satisfies an equation of the type

{W’- W}(Pcox
I ) = fiPo^X) (23)

where /(Pcoy) is any function of P, co and y, and W' is a number
greater than mc^, so that {Pcx)x\) is of the form

(P^xl) =f{Pojx)l{W'-W}+X{ojx)^{W'~~W), (24)

and let us determine now what A must be in order that (Pctjy|) may
represent only outward moving particles. We can do this by trans-

forming (Pa>y|) to the a:-representation, or rather the -repre-

sentation, and comparing it with (12) for large values of r. The
transformation function is

{r6<j>\Pcox) = QiPricos cooQS 0+8111 tosin 0COS

For the direction 6 — 0 we find

{r0^\) —
OO

P^^dP

h-

^oo

j

J 0

P^dP

‘27r pTi

dx
0 Jo

27r
f

r“^iJ^r cos colH "na> = 7r

0 iPrIh +

sin CO dcp eU>rcosai//t(p^^|)

^iPr oos coin

'tt gi/Ycoa coin Q
+

The second term in the { } brackets is of order r““-^, as may be verified

by further partial integrations with resiiect to co, and can therefore

be neglected. We are left with

1

00 P^tt

P dP dx {e-"’'/'* (/VxD (-POxD)
0 Jo

foo

= ih-^r~^ P dP {e->'^ (P7ry|)^-e'/^'V*- (POyl)}. (25)

When we substitute for (Pcoyl) its value given by (24), the first

term in the integrand in (25) gives

f "p dPe-’^‘^i%f{P7rx)l{ W'- W) fA(7Tx)S( IF'— IT)}. (26)
Jo

The term involving S( IT'— IT) here may be integrated immediately
and gives, when one uses the relation P dP = W dW Jc^, which follows

from (16),

f

oo

IT dW c"-''^^A(7rx)S(fT'— IT) =
= ih-ic-'^r-^ W'Xi7Tx)e-^^"^/K (27)
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To integrate the other term in (26) we use the formula that

{

oo Q-iPrlh

0
p^p{

oc

0
g{P)p7zzp dP, (28)

with neglect of terms involving for any continuous function g{P),

!

00

K{P)e-^^^g*' dP is of order r~'^ for any

continuous function K{P) and since the difference

g{P)l(P'-P)-g{P')l{P'^P)

is continuous. The right-hand side of (28), when evaluated with

neglect of terms involving r~^, and also with neglect of the small

domain P'— e to P'-f-e in the domain of integration, gives

g{P
oo o-iPrin C

pTzzp dP = g{P')e-i^^'^g^

]

gHP'- pyrin.

P'—P dP

ig{P')e-^^‘

poo

''rth 1

sin(P'

—

P)r
I
h
dP = irrg{P')e-iP'rIhP'~P

In our present example g{P) is

g{P) = ih-ir-^Pf{P7rx){P'-P)l{W'-^W),

(29)

which has the limiting value when P—P',

g{P') = ih-^r~'^P'f{P'7Tx)W'jP'c^ = i|f'/(PVx).

Substituting this in (29) and adding on the expression (27), we obtain

the following value for the integral (26)

77/(PVx)+ ?A(7Tx)}e-'’^''^/'''. (30)

Similarlj^ the second term in the integrand in (25) gives

7r/(PTx)— A(0x)}e'^^'^/". (31)

The sum of these two expressions is the value of {r0^\) when r is large.

We require that (r0^|) shall represent only outward moving
particles, and hence it must be of the form of a multiple of

Thus (30) must vanish, so that

H'^x) = —^'^/(P'ttx). (32)

We see in this way that the condition that {rd<l>\) shall represent only

outward moving particles in the direction 6 = 0 fixes the value of

A for the opposite direction 6 = rr. Since the direction 6 = 0 or

a) — 0 of the pole of our polar co-ordinates is not in any way singular,

we can generalize (32) to

= —'^7r/(P'a>x), (33)
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which gives the value of A for an arbitrary direction. This value

substituted in (24) gives a result that may be written

(PcoxI) ==f{Pc^x){^l{W'-W)~i7rh{W'-W)}, (34)

since one can substitute P' for P in the coefficient of a term involving

S(1T'

—

W) as a factor without changing the value of the term. The
condition that {Pojx

\ )
shall represent only outward moving particles is

thus that it shall contain the factor

{\l{W'—W)-i7rh{W'—W)}. (35)

With A given by (33), expression (30) vanishes and the value of

(rO^D for large r is given by expression (31) alone, thus

(rO^I) = — 277^-ic-V-iTT7(P'0x)e^^^
I

This may be generalized to

{rd<l>\) = —27Th-^c-^r-^W'f{P'cox)e^^'^l^,

giving the value of {r6<f>\) for any direction 6, «/> in terms of /(P'cox)

for the same direction labelled by co, x- This is of the form (12) with

u{e4>) = —27rh-ic-^wy{P'cox)

and thus represents a distribution of outward moving particles of

momentum P' whose number is

c^P'

W' .2 \n^he-
(36)

per unit solid angle per unit time. This distribution is thus that

represented by the (Pa>x|) of (34).

From this general result we can infer that, whenever we have a

representative {Pcox\) representing only outward moving particles

and satisfying an equation of the type (23), the number per unit solid

angle per unit time of these particles is given by (36). If this (Pa>x|)

occurs in a problem in which the number of incident particles is one
j)er unit volume, it will correspond to a scattering coefficient of

amount
47t~W^^W'P'

f{P'<^x)\^- (37)

It is only the value of the function /(Pc^x) for the point P = P' that
is of importance.

If we now apidy this general theory to our equations (21) and (22),

we have
/(Peux) = AS(Pa>xa'|F|P«oj«xV).
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.Hence from (37) the scattering coefficient is

.\{P'ojxoc'\ V\P^oj\^oc^)\K (38)

If one neglects relativity and puts W^W' jc^ — this result reduces

to the result (15) obtained in the preceding section by means of

Green’s theorem.

§ 59 . Dispersive Scattering
We shall now determine the scattering when the incident particle is

capable of being absorbed, that is, when our unperturbed system of

scatterer plus particle has closed stationary states with the particle

absorbed. The existence of these closed states for the unperturbed

system will be found to have a considerable effect on the scattering

for the perturbed system, and indeed an effect that depends very

much on the energy of the incident particle, giving rise to the

phenomenon of dispersion in optics when the incident particle is

taken to be a photon.

We use a representation for which the fundamental states are the

stationary states of the unperturbed system, as was the case for the

p-representation of the preceding section. These stationary states are

now the states for which the particle has a definite momentum
p' and the scatterer is in a definite state a', together with the closed

states, j/ffc say, which form a separate discrete set. We shall assume
that these states are all independent and orthogonal, so that our

representation is of the usual orthogonal type. This assumption is

probably not justifiable when the particle is an electron or atomic
nucleus, since in this case for an absorbed state ijjj^ the j)article will

still certainly be somewhere, so that one would expect to be able to

expand in terms of the eigen-?/f’s ip(x'oi') of x, y, z, and the a’s, and
hence also interms of the »A(p'a'). On the other hand, when the x>article

is a photon it will no longer exist for the absorbed states, which are

then certainly independent of and orthogonal to the states i/f(p'a')

for which the particle does exist. Thus the assumxition is justified

in this case, which is the important practical one.
The representative of a state will now consist of a discrete set of

numbers (Jc\

)

referring to the fundamental states iJjj. together with the
three-dimensional continuous ranges of numbers {p'oc'\) referring to
the there being one such range for each set of values oc' for the
QL s. Similarly the matrices representing observables will now contain
discrete rows and columns labelled by k together with continuous
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ranges labelled by {p, ol). Thus, for example, the matrix representing
F, the perturbing energy, will have elements {k'\V\k"), {k'\V\p"oL"),

(pV|F|^''), and {p'oc'\V\p"cx"),

Since we are concerned with scattering, we must still deal with
stationary states of the whole system, which will still be given by an
equation of the type (3). We shall now, however, have to work to the
second order of accuracy, so that we cannot simply use the first-order

equation (4). The exact equation (3) gives, when written in terms
of representatives,

{W'~W}(pa'\) =
== (p'V'D+S^. {poc'\V\k")(k"\) !.(39)

{E-E^}{k\) = ^^.l(k\V\p"o.")dp" {k\V\h'')(k'%
_

where W' is given by (18) and is the energy of the stationary
state of the unperturbed system. If we suppose the exact
to be expressed as the sum of iIj(Hq), a first-order correction a
second-order correction tfj2 >

^i^d so on, thus

the r-th-order correction will be given in terms of the (r— l)-th by

Thus its representative {poL'\r), (A;|r) will be given by
{W'— W}{poi'\r) =

{E-E^)(k\r) = P
^

= / (*l l)+ Sj^ (^•lF|/;")(i:"|?-— 1).

For r = 1 these equations are just the generalization of (17) when
there exist absorbed states The unperturbed stationary state

ijjip'^oc^) will now be represented by

(pa|0) == po)
(y^.|()) 0^ (41)

instead of merely by (19), so the first-order correction will be given by
{W'~-W}{poL'\\) =^h^pQc'\V\p^cx^^) (42)

{/i7-/4}(/6-| 1) (^'1 F|y' a<>). (43)

We may assume that the matrix elements {k'\V\k'') of V vanish,
since these matrix elements are not essential to the phenomena under
investigation, and if they did not vanish it would mean simply that
the absorbed states iJjj^ had not been suitably chosen. We shall further
assume that the matrix elements {p'<x'\V\p"a") are of the second order
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of smallness when the matrix elements {k'\V\p"cx"), {p'oL'\V\h") are

taken to be of the first order of smallness. This assumption will be

justified for the case of photons in Chapter XII. We now have from

(43) and (42) that (^[1) is of the first order of smallness, provided

E does not lie near one of the discrete set of energy-levels Ej^, and
(paj 1) is of the second order. The value of (pal2) to the second order

will thus be given, from the first of equations (40), by

{W'—W}{poi'\2) == {poc'\V\kf'){k"\V\p^^aP)l{E~Ej,^.

The total correction of the second-order, arising partly from (pa|l)

and partly from (pa] 2), therefore satisfies

{W'— W}{{poL'
1 1 )+ {pot'

1 2)} =
= U{{poc'\ F|p0a0)-f S;, {poc'\ V\k)ik\ F|2y>cv«)/(/?~^„)}.

This equation is of the type (23), provided oc' is such that IF'

which means that a' as a final state for the scatterer is not incon-

sistent with the law of conservation of energy. We can therefore

infer from the general result (37) that the scattering coefficient is

477%2TFo1F'P'

c^po (44)

The scattering may now be considered as composed of two ])arts,

a part that arises from the matrix element (^>'a:'l F|p^hV*) of the

turbing energy and a part that arises from the matri.x elements

(p'a'jFjfc) and (/bj F|p®od®). The first part, which is the same as our

previously obtained result (38), may be called the true scattering.

The second part may be considered as arising from an aV)sor])tion of

the incident particle into some state k, followed immediately by a

re-emission in a different direction. The fact that we have to add
the two terms before taking the square of the modulus denotes inter-

ference between the two kinds of scattering. There is no e.xj^erimental
way of separating the two kinds, the distinction between them being

only mathematical.

§ 60- Resonance Scattering

Suppose the energy of the incident particle to be varied continuously
while the initial state a® of the scatterer is kept fixed, so that the^

total energy E varies continuously. The formula (44) now shows that
as E approaches one of the discrete set of energy-levels Ej^, the
scattering becomes very large. In fact, according to formula (44)
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the scattering should be infinite when E is exactly equal to an Ej^.

An infinite scattering coefficient is, of course, physically impossible,

so that we can infer that the approximations used in deriving (44)

are no longer legitimate when E is close to an Ej^. To investigate

the scattering in this case we must therefore go back to the exact
equations (39) and use a different method of approximating to their

solution.

Let us take one particular Ej^ and consider the case when E is

close to it. The large term in the scattering coefficient (44) now arises

from those elements of the matrix representing F that lie in row h
or in column k, i.e. those of the type {k\V\poL) or {poL\V\k). The
scattering arising from the other matrix elements of F is of a smaller

order of magnitude. This suggests that in our exact equations (39)

we should make the approximation of neglecting all the matrix ele-

ments of F except the important ones, which are those of the type
{'poL'\V\k) or {k\V\poL'), where a' is a state of the scatterer that has

not too much energy to be disallowed as a final state by the law of

conservation of energy. These equations then reduce to

{W'— W}{poi'\) = {poc'\V\k){k\) (45)

[E-E,^(k\) = s,. f (/cl v\pa.') dp (pcc'\), (46)

the ex' summation being over those values of oc' for which W' given

by (18) is > mc“. These equations are now sufficiently simple for us

to be able to solve exactly without further approximation.

From (45) we obtain by division

(pa'I) = {poc'\V\k){k\)l{W' (47)

We must choose A, which may be any function of the momentum
p and ol\ such that (47) reju'esents the incident particles (19) together

with only outward moving particles. [The right-hand side of (19),

with oc' substituted for a, is actually of the form AS( IF'

—

W), since

the conditions a' == a*’ and p - p” for this right-hand side not to

vanish lead to W' = E-~ H,^{oc') and IF -= IF^

which together give IF' = - W .\ '^rhus (47) must be

(p«'| )
-= Hv'-in 1 ivoc

' I

F| A0(Ai ){1 /( IF' --- W)~-i7Th ( IF'- W)],

. . . (48)

and from the general formida (37) the scattering coefficient will be

477nF‘lh'P'/Ac'‘P«. Kp'a'l Fl7^:)r-'|(A:|)12. (49)

c c3595
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It remains for us to determine the value of (A;|). We can do this

by substituting for {'poL'\) in (46) its value given by (48). This gives

{^-^J(^l) =
= M(A;lF|^0a0)-|-(;j3l)X„J \{k\V\pa')\^{ll{W'— W)-i7Th{W'— W)}dp

= h^{k\V\:p^oL^)-^{k\){a—ih},

where « = \{k\V\poL')\^ dpjiW'—W) (50)

and 6 = \{k\V\poL')\^h{W'-W)dp

= TV So.' JJJ \{k\ V\Pojxot')\^ S(TF'- TF)P2 dP sin a> dco dx

= 7T Xa'P'W'c-^ij l(^^lF|P'a>xa')P sinco dco dx. (51)

Thus {k\) = h^{k\V\p^cxP)l{E-Pk—a-i-ib}. (52)

Note that a and h are real and that 6 is positive.

This value for (A:|) substituted in (49) gives for the scattering

coefficient

ATT^h^m'P' \{p'oi'\V\k)\mk\V\p^oL^W

One can obtain the total effective area that the incident particle

must hit in order to be scattered anywhere by integrating (53) over

all directions of scattering, i.e. by integrating over all directions of

the vector p' with its magnitude kept fixed at P', and then summing
over all ol' that are to be taken into consideration, i.e. for which
W' > mc^. This gives, with the help of (51), the result

4:irh^W^ 6|(A;|F|p«aO)P

c^po (JS7— a)2+6^ (54)

If we suppose E to vary continuously through the value P;^,, the

main variation of (53) or (54) will be due to the small denominator
(E—Ej^— If we neglect the dependence of the other factors

in (53) and (54) on P, then the maximum scattering will occur when
E has the value Ej^-\-a and the scattering will be half its maximum
when P differs from this value by an amount b. The large amount
of scattering that occurs for values of the energy of the incident

particle that make E nearly equal to P;^. give rise to the phenomenon
of an absorption line. The centre of the line is displaced l)y an
amount a from the resonance energy of the incident particle, i.e. the
energy which would make the total energy just Ej^, while the quantity
h is what is sometimes called the half-width of the line.
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§ 61 . Emission and Absorption
For studying emission and absorption we must consider non-
stationary states of the system and must use the perturbation method
of § 52. To determine the coefficient of spontaneous emission we
must take a state for which the particle is initially absorbed, so that
the representative of the state is then

(A^l) = 1 (_pod|) = 0,

and determine the probability that at some later time the particle

shall be on its way to infinity with a definite momentum. The method
of § 54 can now be applied. From the result (28) of that section we see

that the probability per unit time per unit range of a> and x
particle being emitted in any direction a>', x' with the scatterer being
left in state a is

27Tin,\{h\V\W'oj'x'<x')\^, (55)

provided, of course, that ot is such that the energy W'

,

given by (18),

of the particle is greater than mc^. For values of oc that do not
satisfy this condition there is no emission possible. The matrix ele-

ment {k\V\W'co'x <^') here must refer to a representation in which
W

,
CO, Xi a are diagonal with the weight function unity. The

matrix elements of V appearing in the three preceding sections refer to

a representation in which p^, p^ are diagonal with the weight
function unity, or P, co, x are diagonal with the weight function
P‘-^sin CO. They would thus refer to a representation in which W, co, x
are diagonal with the weight function dPjdW . P^sin co = WPjc^. sin co .

Thus the matrix element {h\V\W'co'x a.') in (55) is equal to

{W'P'jc^ . sina>')^ times our previous matrix element {h\V\P'cjo'x(x')

or {k\V\p'(x'), so that (55) is equal to

277 W'P'
c2

smco'|(A:|F|pV)|2.

The probability of emission per unit solid angle per unit time, with
the scatterer simultaneously dropping to state oc

,
is thus

27r W'P'

^ |(&lF|pV)p. (56)

To obtain the total probability per unit time of the particle being
emitted in any direction, with any final state for the scatterer, we
must integrate (56) over all angles co', and sum over all states a'

whose energy is such that H^{oc)P7nG^ < The result is

just 26/i^, where b is defined by (51). There is thus this simple rela-
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tion between the total emission coefficient and the half-breadth b of the

ahscn'ption line.

Let us now consider absorption. This requires that we shall study

a state for which initially the particle is certainly not absorbed but

is incident with a definite momentum. Thus the initial representative

of the state must be of the form (41). We must now determine the

probability of the particle being absorbed after time T. Since our

final state is not one of a continuous range, we cannot use directly

the result (28) of § 54. If, however, we take

(i^“l)o — ^ocaP (^l)o
= ^

as the initial representative of the state, the analysis of §§ 52 and 54

is still applicable as far as equation (25) and shows us that the proba-

bility of the particle being absorbed into state after time T is

2\{h\ V\ffi oP) P[1 -QOB{[Ej,-E)Tlhy]l{Ej-E)K

This corresponds to a distribution of incident particles of density

h~^, owing to the omission of the factor h^ from (57), as compared

with (41). The probability of there being an absorption after time

T when there is one incident particle crossing unit area per unit time

is therefore

2A3Wo/c2po. \{Jc\ V\p^a^)\^ll—cos{{Ej,—E)T/h}'}l{Ej,—E)^. (58)

To obtain the absorption coefficient we must consider the incident

particles not all to have exactly the same energy = E—Hg(aP),

but to have a distribution of energy values about the correct value

Ej^—HJ(oP) required for absorption. If we take a beam of incident

particles consisting of one crossing unit area per unit time j)er unit

energy range, the probability of there being an absorption after time

T will be given by the integral of (58) with respect to E. This integral

may be evaluated in the same way as (26) of § 56 and is equal to

4.rr^h^ W^Tjc^P^

.

I
{k\ V\p^oP) |2.

The probability per unit time of an absorption taking place with an

incident beam of one particle per unit area per unit time j)er unit

energy range is therefore

477^^2 Ifo/c2po
. j

7|p0c,0) |2^ (59)

which is the absorption coefficient.

The connexion between the absorption and emission coefficients

(59) and (56) and the resonance scattering coefficients calculated in

the preceding section should be noted. When the incident beam does
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not consist of particles all with the same energy, but consists of a unit

distribution of particles per unit energy range crossing unit area per

unit time, the total number of incident particles with energies near

an absorption line that get scattered will be given by the integral of

(54) with respect to E, If one neglects the dependence of the

numerator of (54) on E, this integral will, since

^
j-p

have just the value (59). Thus the total number of scattered particles

in the neighbourhood of an absorption line is equal to the total number

absorbed. We can therefore regard all these scattered particles as

absorbed particles that are subsequently re-emitted in a different

direction. Further, the number of particles in the neighbourhood of

the absorption line that get scattered per unit solid angle about a

given direction p' and then belong to scatterers in state ol will be

given by the integral with respect to E of (53), which integral has

in the same way the value

4:1T%WW'P' 7T

c^po b
|(pV|F|^:)]2|(A:|lVa<')|2.

This is just equal to the absorption coefficient (59) multiplied by the

emission coefficient (56) divided by 26/fi, the total emission coeffi-

cient. This is in agreement with the point of view of regarding the

resonance scattered particles as those that are absorbed and then

re-emitted, according to which point of view the fraction of the

total number of absorbed particles that are re-emitted in a unit

solid angle about a given direction would be just the emission

coefficient for this direction divided by the total emission coefficient,

provided the absorption and emission processes are governed inde-

pendently each by its own probability law.
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SYSTEMS CONTAmUSTG SEVERAL SIMILAR PARTICLES

§ 62. Symmetrical and Antisymmetrical States

If a system in atomic physics contains a number of particles of the

same kind, e.g. a number of electrons, the particles are absolutely

indistinguishable one from another. No observable change is made

when two of them are interchanged. This circumstance gives rise to

some curious phenomena in quantum mechanics having no analogue

in the classical theory, which arise from the fact that in quantum

mechanics a transition may occur resulting in merely the interchange

of two similar particles, which transition then could not be detected

by any observational means. A satisfactory theory ought, of course,

to count two ohservationally indistinguishable states as the same

state and to deny that any transition does occur when two similar

particles exchange places. We shall find that such a theory can be

developed in agreement with the principles of quantum mechanics.

Suppose we have a system containing n similar ijarticles. We may
take as our dynamical variables a set of variables describing the

first particle, the corresponding set describing the second particle,

and so on up to the set describing the n-th. particle. We shall then

have the f/s commuting with the ^^’s for r ^ s. (We may require

certain extra variables, describing what the system consists of in

addition to the n similar particles, but it is not necessary to mention

these exphcitly in the present chapter.) The Hamiltonian describing

the motion of the system will now be expressible as a function of

the The fact that the particles are similar requires that

the Hamiltonian shall he a symmetrical function of the ^2 •••

shall remain unchanged when the sets of variables f^ are interchanged

or permuted in any way. This condition must hold no matter what
perturbations are apphed to the system.

We may take a representation with observables q^, ... q^, diago-

nal, which are such that the qfs are the values at time t of cei‘tain

commuting dynamical variables describing the first particle, the g'g’s

are the values at time t of the corresponding variables describing the

second particle, and so on. We may further choose the phases of

the representation in the same way for each of the particles. (This

means, for example, that if a certain momentum describing the
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first particle is represented by — ihdjdqj^, the corresponding momen-
tum Pj, describing the r-th particle must be represented by — iUdldq^.)

The representation will then treat all the particles on the same foot-

ing. The condition that the Hamiltonian H is symmetrical between
all the particles may now be expressed by the condition that its

representative {q'^q2 . . qn\H\q'[q2 . .
. q'!^), or {q'\B[\q'') for brevity, is

symmetrical between all the ^’s, i.e. that it remains unchanged if any
permutation is applied to the g'’s and the same permutation to the

q"'s. This condition may be expressed analytically thus,

(qW) = (,Pq'\H\Pq~), (1)

where P denotes any permutation of the numbers 1 ,
2 ... n and Pq'

denotes the set of numbers obtained by applying the permutation

P to the suffixes of q'^, 0.2 On'

Let {OxO'i" ‘0'n\) i0'\) wave function representing any
state. It will satisfy the wave equation

(s-'l) = J W\H\q'') dq" {q"\). (2)

If we apply any permutation P to the variables q' in {q'\) we shall

obtain a function {Po'\) satisfying

dq”(q"\)

= i {Pq’\H\Pq-') cUl"(Pq"\),

since we can apply any permutation to the variables of integration
q" in the intergrand without changing the value of the integral. With
the help of (1) this becomes

ifi ~(Pq’\) = I {q'\H\q'') dq" {Pq'% (3)

which shows that {Pq']) is a solution of the wave equation (2). Hence
if we apply any permfwlalio7i to the variables in a solution of the wave
equation we obtain another solution.

Suppose we take a state whose rej^resentativc (g'|) at some par-

ticular time t is a symmetrical function of all the g"’s, so that

(?'!) = (P?'l) (4)

for any P. The right-hand sides of (2) and (3) are now equal, so that

^ I) = ^ {Pq !)•
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This equation is the time derivative of (4) and shows that if (4) holds

at one particular time it holds also at a slightly later time, and thus

by induction it holds at all times. Thus if a wave function is initially

symmetrical it always remains symmetrical.

Similarly we may take a state whose representative {q'\) at some
particular time is antisymmetrical, i.e. changes sign

with interchange of any pair of g^’s. We shall then have

(?'!)= ±(P«'I), (5)

the + or — sign being taken according to whether the permutation

P is even or odd {i.e. according to whether P can be built up from

an even or an odd number of simple interchanges). The same argu-

ment as before now shows that if a wave function is initially anti-

symmetrical it always remains antisymmetrical.

Let us make a canonical transformation to a ^-representation

which, like the original ^-representation, treats all the particles on the

same footing. This means that the ^’s consist of corresponding sets

of observables Q2 -“Qn describing the first, second . . . nth. par-

ticle respectively and that the phases are chosen in the same way
for each of the particles. The transformation function will now be

of the form

(^1 Q2 Q'2 Qn) ~ {QlWl) {Q2\^2) ••• {Qn\^n)’ (^)

in which each factor {Q.'r\fr) is the same function of its variables

q',.. This condition gives, if we denote {Q[ • Qn\qi q '2
• • • 9'^)

by {Q'\q') for brevity,

= {PQ'\Pq'). (7)

for an arbitrary permutation P. The new representative of any state

is given by
m) = HQ'W) dq'{q'\). (8)

ITrom this equation we can deduce that

(PQ'\) = i {PQ'W) dq' (g'l)

= J(P<3'|Pg') dq' (Pq’\)

= J(W) c?2'(Pg'l) (9)

with the helj) of (7). Now if (g'|) is symmetrical, so that equation (4)

holds, the right-hand sides of (8) and (9) are equal. We then have

(^'1) = (P^'l), so that (^'D is also symmetrical. Similarly if {q'\) is

antisymmetrical, (^'|) is also antisymmetrical. Thus the property of

the representative of a state of being symmetrical or antisymmetrical
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remains invariant under a canonical transformation. This invariance,

together with the fact proved above that a wave function if initially

symmetrical or antisymmetrical always remains so, shows that the

property of being symmetrical or antisymmetrical is a property of the
states themselves and not merely a property of their representatives.

Thus we can talk about symmetrical and antisymmetrical states.

The invariance and permanence of the symmetry properties of the

states means that for some particular kind of particle it is quite

possible for only symmetrical or only antisymmetrical states to occur
in nature. Whether this is the case cannot be decided by any general

theoretical considerations, but can be settled only by reference to

special experimentally determined facts about the j^articles in ques-

tion. For photons one can settle the question by making use of

Planck’s radiation law. Only when one assumes the symmetrical states

for photons does one get a statistical mechanics leading to Planck’s
law for radiation in statistical equilibrium. This statistical mechanics
is known as the Einstein-Bose statistics, as it was first introduced
by Bose and Einstein before the arrival of the modern quantum
mechanics.

For electrons we use the fact that, if we make the a|)proximation
of regarding the electrons in an atom as each moving in its own
“orbit’ {i.e. as l)eing each describal>lo by its own wave function
involving only its own variables), tlien no two electrons will ever l)e

in the same orbit. This fact, wliich is l<nown as l^auli’s exclusion
j)rinciple, may be inferred frcjm general experimentaf evidence on
atomic structure. Let us see how to fit it in witli tlio tlieory. If tlie

wave functions representing the different orbits a-re

a wave function representing the wliole atom will Ije given by the
product

say, for brevity. Otlier wave functions ixqyrc^senting the sa,me dis-

tril)ution of electrons ovtvr the varvious orbits may l)e ol)ta,ine<l by
applying any |)ermutation to the a’s in (10). 'I’liero will l)e altogether
?i! such wave functions, the general one being Any linear
combina,tion of these wave functions will also repros(nit tlie same
electron distribution. One such linear combination is the sum

(g'lPo.),
3595

(11 )
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which is symmetrical between all the g^'’s. Another is

Sp±(2'|P«), (12)

the + or — sign being taken according to whether P is an even

or odd permutation, and this one is antisymmetrical. The anti-

symmetrical wave function (12) has the property that it vanishes

identically if two of the a’s are equal. Hence if we assume that for

electrons only antisymmetrical states occur

^

we shall get the result

that there are no states with two electrons in the same orbit, which
is just Pauli’s exclusion principle. This assumption is the only one

we can make which will lead to Pauli’s exclusion principle.

In this way we can see that for photons we must take the sym-
metrical states and for electrons the antisymmetrical states. These
are special cases of an empirical rule, which appears to hold without

exception, according to which only the symmetrical or only the anti-

symmetrical states occur according to whether the particles in ques-

tion carry a charge of an even or an odd multiple of the electronic

charge. When only the symmetrical or only the antisymmetrical

states are allowed for a particular kind of particle, the theory can
no longer make a distinction between two states which differ only

through a permutation of the particles, so that the difficulties men-
tioned at the beginning of this section disappear.

§ 63. Permutations as Observables
Let us now build up a general theory for a system containing n
similar particles when states with any kind of symmetry properties

are allowed, i.e. when there is no restriction to only symmetrical or
only antisymmetrical states. The general state now will not be sym-
metrical or antisymmetrical, nor will it be expressible linearly in

terms of symmetrical and antisymmetrical states when n 2.

If P denotes any permutation and ijj any ?/f-symbol, we can give
a meaning to Pifs, the j/r-symbol obtained by operating on ifj with P.
We define Pip to be the ?/f-symbol whose representative is {Pq'\),

obtained by applying the permutation P to the representative {q'\)

of ijj. This Pip is independent of the representation used for defining
it, as follows from equation (9). Further, the operation by which
Pip is obtained from j/r is a linear one. Hence we can regard Pip as
the product of an observable P with ip, i.e. we can regard the permuta-
tion P as an observable.

There are n\ permutations, each of which can be regarded as an
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observable. One of them, say, is the identical pei'mutation, which
is equal to unity. If ijj denotes a symmetrical state, we have

= (13)

for any P, and hence a symmetrical ip is an eigen-^ of every per-

mutation belonging to the eigenvalue unity. Similarly an anti-

symmetrical ip is an eigen-ip of every permutation belonging to the

eigenvalue + 1 according to whether the permutation is even or odd.

The product of any two permutations is a third permutation and
hence any function of the joermutations is reducible to a linear func-

tion of them. Any permutation P has a reciprocal P“^ satisfying

PP-i = p-ip =:P^=l.
A permutation P, like any other observable, can be represented

by a matrix. Its ^-representative {g['\P\g_") will satisfy

and hence

(q'lPW) = S(P2'-s") (14)

= 8(g'-P-iff"). (15)

The 8 function in (14) or (15) denotes the product of n factors of

the type S({P<:/'},.

—

q") or S(r/'.

—

{P~^ q"],) rt^specti vely. '^rhe con jugate

complex of P is gi ven by

(q"\rW) -
. (q'\l’~'\q")

from (15) and (14), so that

P = P--^ (16 )

Thus a permxitation is not in general a real obsei'vablc, its conjugate

complex being equal to its reciprocal.

Any permutation of tire numl)ci-s 1, 2, 5, ...7/ may be e.\'pi'essed

in tlie cyclic notation, e.g. with n ~ S

Pa - (i4;{)(27)(r,s)(6), (17)

in which each numlier is to be repbiced liy the succeeding number
in a bracket, unl(\ss it is tlie last in a, bi-acket, wbcm it is to be re|)laced

by the Hist in that bra,cket. ‘'rinis /^, changes the niimliers 12345()78

into 47138(>25. The type of a,ny^ jiernvutation is specified by the

partition of tlie numlxM* n wliich is providcxl by the Tiumber of mim-
bcu's in each of the lirackcds. d’hus tlie type'! of P^, is specified liy the

partition 8 = 3 ) 2
|
2

]

I, ik'irnuitations of the same ty|)e, i.e. corre-



204 SYSTEMS CONTAINING SIMILAR PARTICLES §63

Spending to the same partition, we shall call similar. Thus, for

example, in (17) is similar to

Pi, = (871)(35)(46)(2). (18)

The whole of the n ! possible permutations may be divided into sets

of similar permutations, each such set being called a class. The per-

mutation Pj^ = 1 forms a class by itself. Any permutation is similar

to its reciprocal.

When two permutations and are similar, either of them ij,

may be obtained by making a certain permutation P in the other

JJj. Thus, in our example (17), (18) we can take P to be the per-

mutation that changes 14327586 into 87135462, i.e. the permutation

P = (18623)(475).

We then have the algebraic relation between and JJ,

P, = PP^P-\ (19)

To verify this, we observe that the product P^ ijj of with any ijj is

changed into -FJ, i/f if one applies the permutation P to the Pf^ in the

product but not to the ip. If we multiply the product by P on the

left, we are applying this permutation to the whole ?/f-symbol P^^ ijs and
thus to both the P^ and the ifj, so that we must insert another factor

P~^ between the P^ and the ip, giving us PPa P~^ equate to

ifti/f. An alternative proof consists in noting that when the per-

mutation P is applied to the representative S(P„^'— g") of P„, it

gives h{PP^q' —Pq'') or h{PP^P~'^q' —q"), which is just the repre-

sentative of PP^P-^.
Equation (19) is the general formula showing when two permuta-

tions and are similar. Of course P is not uniquely determined
when Pa and are given, but the existence of any P satisfying (19)

is sufficient to show that P^ and are similar.

§ 64. Permutations as Constants of the Motion
A permutation P may be considered as an observable at each instant

of time and may therefore be considered as a dynamical variable.

Let us see how P varies with the time. The fact that the Hamiltonian
is symmetrical leads at once to the equation

PH = HP, (20)

as may be verified by a similar argument to that used for equation
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(19), or alternatively by a direct application of the matrix repre-

sentatives. Thus from (14)

(q'\PH\q") = JS(Pff'-e'") dq’" (q"'\H\q") = {Pq'\H\q")

and from (15)

(q'\HP\q’) = J {q'\H\q"') dq'" h(q"'-P-W) = (q'\H\P-^q'%

and the two right-hand sides are now equal from (1). Equation (20)

shows that each permutation is a constant of the motion. The P’s are

still constants when arbitrary pertm*bations are applied to the system,

provided the perturbing energy to be added to the Hamiltonian is

symmetrical. Thus the constancy of the P’s is absolute.

In dealing with any system in quantum mechanics, when we have
found a constant of the motion a, we know that if for any state, ol

initially has the numerical value (x\ then it always has this value, so

that we can assign different numbers ol' to the different states and
so obtain a classification of the states. The procedure is not so

straightforward, however, when we have several constants of the

motion a which do not commute (as is the case with our permutations
P), since we cannot assign numerical values for all the a’s simul-

taneously to any state. Eet us first take the case of a system whose
Hamiltonian does not involve the time explicitly. l!’he existence of

constants of the motion a whicli do not commute is tlien a sign tliat

the system is degenerate. We must now look for a. function /:? of the

a’s which has one and the same numerical value /3' for all those states

belonging to one energy-level H'

,

so that wo ca,n use fi for chissifying

the energy-levels of the system. We can express the condition for^
by saying that it must be a function of H

,

a,ccording to tlie general

definition of a function (of an obscrvalole, so that ^ must commute
with every observable that commutes with H

,
i.e. with, every constant

of the motion. If the a’s are the only cionstants of the motion, or if

they are a set that commute with all other independent constants of

the motion, our problem reduces to finding a function jS of the a’s

which commutes with all the a’s. We can then assign a numerical
value /3' for ^ to t^ach energy-level of the systcvm. If we can find

sevei'al such functions they must all commute with each other, so

thfit we can give them all numerical values sim iiltaneously and ol)tain

a complete classification of the energy-levels. When the Hamiltonian
involves the time explicitly one cannot talk about encu'gy-levels,

but the ^’s will still give a useful classification for the states.
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We follow this method in dealing with our permutations P. We
must find a function x such that P^P"^ = X every P.

It is evident that a possible x Is S ij, the sum of all the permutations

in a certain class c, i.e. the sum of a set of similar permutations, since

2i PjFJ.P~^ must consist of the same permutations summed in a dif-

ferent order. There will be one such x each class. Further, there

can be no other independent y, since an arbitrary function of the

P’s can be expressed as a linear function of them with numerical

coefficients, and it will not then commute with every P unless the

coefficients of similar P’s are always the same. We thus obtain all

the x’s that can be used for classifying the states. It is convenient

to define each x average instead of a sum, thus

Xc = 2: Pc,

where is the number of P’s in the class c. An alternative expression

for Xc i®

Xc = n\-^XpPP,P-\ (21)

the summation being extended over all the n! permutations P. For

each permutation P there is one y, x(P) say, equal to the average of

all permutations similar to P. One of the x’sisx(-fi)= 1-

The constants of the motion xd X2 j
• • • Xm obtained in this way will

each have a definite numerical value for every stationary state of the

system, in the case when the Hamiltonian does not involve the time

explicitly, and also in the general case can be used for classifying

the states, there being one set of states for every permissible set of

numerical values x'l^ X2 > • •
• Xm x’®- Since the x’s are absolute

constants of the motion, these sets of states will be exclusive, i.e,

transitions will never take place from a state in one set to a state in

another.

The permissible sets of values x! that one can give to the x’® ^^e

limited by the fact that there exist algebraic relations between the

x’s. The product of any two x’®> Xp Xq-> i® of course expressible as

a linear fimction of the P’s, and since it commutes with every P it

must be expressible as a linear function of the x’s, thus

XpXq Xl~l~®2X2~l~' * * * ~b^mXm’ (22)

where the a’s are numbers. Any numerical values x' that one gives

to the x’s must be eigenvalues of the x’s and must satisfy these same
algebraic equations. For every solution x of these equations there

is one exclusive set of states. One solution is evidently Xp “ t for
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every tihis gives the set of symmetrical states satisfying (13).

A second obvious solution is xi = ± Ij the + or — sign being taken
according to whether the permutations in the class p are even or odd,

and this gives the set of antisymmetrical states. The other solutions

may be worked out in any special case by ordinary algebraic methods,

as the coefficients a in (22) may be obtained directly by a considera-

tion of the types of permutation to which the x’s concerned refer.

Any solution is, apart from a certain factor, what is called in group

theory a character of the group of permutations. The x’s are all real

observables, since each P and its conjugate complex P~^ are similar

and will occur added together in the definition of any y, so that the

x'’s must be all real numbers.

The number of possible solutions of the equations (22) may easily

be determined, since it must equal the number of different eigen-

values of an arbitrary function B of the x’s. We can express B as

a linear function of the x’s with the help of equations (22) ;
thus

B = 6iXi+^2X2+ • • • (23)

Similarly we can express each of the quantities P'k . . as a

linear function of the Prom these m equations, together with

the equation x(Pi) — 1, we can eliminate the ni unknowns y, , X2 • • • Xm->

obtaining as result an algebraic equation of degree m for B,

The m solutions of this equation give the m i)ossil)le e>igenvaliies for

B, each of which will, according to (23), l)e a linear function of

bi, b^.'-bm whose coefficients are a permissible set of values

Xni- d'hese sets of values y' thus obt<i.ined must l)o all different, since

if there were fewer than m different j)ermissil)lo sets of values y' for

the y’s there would exist a linear function of the y’s every one of

whose eigenvalues vanishes, which would mean that/ the linear func-

tion itself vanishes and tlie y’s are not linearly inde|)endent. Tluis

the number of permissil)le sots of numerical values for the y’s is just

equal to w, which is the number of chisses of ])ermutations or the

number of partitions of 71. This number is therefore the number of

exclusive sets of states.

The ])roporties of tlu'i /^’s which are not {properties of the y’s will

only descrilpc the degenera,cy of the states, in the case of a system
whose Hamiltonian does not involves the time explicitly. If ij/

denotes any stationary state, whore /(P) is any function of
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tHe permutations, will denote another stationary state belonging to
the same energy-level, except when it vanishes identically. By
expanding /(P)^ in terms of a complete set of independent stationary
states belonging to this energy-level, we get a representation of/(P)
and thus of each P. In this way we see that, if we obtain a matrix
representation of all the P’s consistent with each of the x’s being
a certain number x ^ then the number of rows and columns of the
matrices will be the degree of degeneracy of the states in the exclusive
set X, the number of independent states belonging to each energy-
level. This degeneracy is an essential one and cannot be removed by
any perturbation that is symmetrical between all the similar p)articles.
The states ^ and f{P)ip are observationally indistinguishable, since
any observation that can actually be made must consist in measuring
an observable that is symmetrical between the similar pai'ticles and
therefore commutes with/(P). This remark applies also when the
Hamiltonian involves the time explicitly.

§ 65. Determination of Energy-levels
Let us apply the perturbation method of § 51 and make a first-order
calculation of the energy-levels in the case when the Hamiltonian
does not mvolve the time explicitly. We suppose that for our unper-
turbed states each of the similar particles has its own ^ orbit repre-
sented by a wave function {q'\a) involving only the co-ordinates q' of

IS one particle. We shall have altogether n orbits, one for each
p^icle, which we assume for the present to be all different, and

=,+ r
wave function representing an unxierturbed

a e of the whole system wiU then be the product (10). If we aiiplyn ar 1 rary permutation to the a’s, we shall obtain another wave

= (q'\PaCx), (24)

^1+
unperturbed state with the same energy. There

methodof 8 5] Wh I degeneracy. According to the

consider thL SmenS “ degenerate, wo must
energy V that refer to two stat^^S

the perturbing

of the type IPalFlP ^
same energy, i.e. those

of the a’s. These wiU^f
^ permutationsthese wdl form a matrix with rows and columns.
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whose eigenvalues are the first-order corrections in the energy

-

levels.

It is necessary in the present discussion to distinguish between the

two kinds of permutations, those of the ^’s and those of the a’s.

The essential difference between them can perhaps be seen most
clearly in the following way. Let us consider a permutation in the

general case, say that consisting of the interchange of 2 and 3. This

may be interpreted either as the interchange of the objects 2 and 3

or as the interchange of the objects in the places 2 and 3, these two
operations producing in general quite different results. The first of

these interpretations is the one we have been using up to the present,

the objects concerned being the g’s in the representative of a state.

A permutation with this interpretation can be applied to an arbitrary

function of the g’s. A permutation with the second interpretation

has a meaning, however, when applied to a function of the ^’s only

if each of the g’s has a definite specifiable place in the function. This

is not the case for a general function of the g’s, but it is the case for

any of the n\ functions of the type (24), the place of each q being

specified by the a with which it is bracketed. Any x)<2rmutation
ai)plied to the g’s in given x)laces now produces the same result as

the reciprocal permutation applied to the (x’s. A x)orm iitation of the

(2'’s {i.e. one with the first interpretation), since it can be applied to

any function of the g^’s, i.e. to the representative of any i/»-symbol,

may be regarded as an ordinary observable. On the other hand, a
permutation of places or of the ex’s can be considered as an observable

only in a very restricted sense, since it Inis a meaning only when
multiplied into a «/f-symbol whose rejnesentative is one of the nl wave
functions (24) or some linear combination of them. We denote such
a permutation of the ex’s, considered as an observable in this restricted

sense, by the symbol
We can form algebraic functions of the observables which will

be other observables in the same restricted sense. In particular we
can form average of all P“’s similar to This must
equal average of the similar permutations of the g’s, since

the total set of all permutations of a given type must evidently be
the same whether tlic j)ermutations are ax^plied to the objects q or

to the j^laces tx.

If we set up arbitrarily ji one-one corres])ondence between the g’s

and the ex’s, as is done automatically when wo label both the g’s and
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the a’s by the numbers 1, 2, S,.., ,
n, as in (10), then, if we have any

permutation of the g’s, we can give a meaning to this same permuta-
tion of the oi’s. This meaning is such that

tola) = (Pg|Pa).

In this equation we can apply a permutation to the a’s on both
sides, which will give us

to|Pa«) = (Pff|P„Pa), (25)

an equation which shows us the connexion between permutations of

the q’s and those of the a’s when applied to the wave function (24),

The matrix (J^ a:\y\Pi cx), which we must now study, may be ob-

tained from the matrix {q'\ V\q") representing V by a canonical trans-

formation, in which the transformation functions are just (g^'li^ cx),

the wave function (24), and its conjugate complex (J^aj^'), provided
these functions are properly normalized. Thus

(P,a|FlP,a) = J/(P„ato')d;2'(?'|Fto")c22''(3"|il<=^). (26)

Again, for arbitrary P,

(P„Pa|F|P,Pa) = JJ (P„Pa|2') dq’ {q'\V\q") dq" (s'l^Pa)

= JJ (P^PalPff') dq' {Pq'\ V\Pq'') dq" {Pq"\P^ Pa),

when we apply the permutation P to the variables of integration
q' and q". With the help of (25), this reduces to

(P,PalF|4Pa) = JJ(P„ato')cto' {Pq'\V\Pa") dq" (q"\P,a). (27)

Now since V is symmetrical between all the particles, we must have

(g'|F|r) = (P«'|F|P2a

like (1), and hence, comparing (26) and (27), we obtain

(P,o.|F|P,a) = (P^P(^|F|P,Pa). (28)

Let (Pa| F|a) = Vjp for brevity. Then, taking P == P^~^ in (28),

we obtain ^ . .

(P,o(|FlP,a) = (P,P,-ilFla) Pa
Thus the general matrix element (i^alFli^a) depends only on the
ratio and of the total of (nl)^ matrix elements there are only
nl different ones. The coefficient of any Vp in this matrix will be
a matrix, each of whose elements is 0 or 1, the 1 occurring when

(P„c.|F|P,a) = Fp,

i.e, when — P- fhis matrix, multiplied into any wave
function (g|P^a), gives the result (gli^ce) with P„P,-i == P, i.e. it

gives the result (g'jP-f&oe), so that it is precisely the matrix repre-
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senting the observable P“ or the permutation P applied to the a’s.

Thus the whole matrix (J^a|F|iJa) is equal to the matrix repre-

senting 'XpVpP'^, where the summation is over all the nl permuta-
tions P, and we can put

V = XpVpP°^. (29)

This formula shows that the perturbing energy V is equal to a
linear function of the permutation observables P“ with numerical
coefficients Vp. It is, of course, only an approximate formula, as it

holds only with neglect of those matrix elements of V that refer to

two different energy-levels of the unperturbed system. It can, how-
ever, be used for the calculation of the energy-levels in the first

approximation, and is very convenient for this purpose as the expres-

sion ]S/»Ti>P“ is easily handled. This expression, it should be remem-
bered, is an observable only in the restricted sense mentioned above,

but this sense is sufficiently general for equation (29) to be valid

with neglect of those matrix elements of V referring to two different

energy-levels of the unperturbed system.

As an example of an application of (29) we shall determine the
average energy of all those states arising from a given state of the

unperturbed system that belong to one exclusive set. This requires

us to calculate the average eigenvalue of V when the y’s have specified

numerical values y'. Now the average eigenvalue of P% equals that of

P“P™P®~^ for arbitrary P*'’ and thus equals that of l5C/.« P“P“P“"^,
which is x{P%) Hence the average eigenvalue of V is

'!£^P Vpx {P)’ A similar method could be used for calculating the

average eigenvalue of any function of V, it Ix'ing only necessary to

I’eplace each P“ by x(P) to perform the averaging.

The number of energy-levels in an exclusive set y x fhat arise

from a given state of the unpevrturbed system is equal to the number
of eigenvalues of (29) that are consistent with the equations y ==: y'.

This number is the number of rows and columns in a representation

of the P’s in whicli eacli y y', whicli nu ml)or, from the result at

the end of the preceding section, is just the degree of degeneracy of

tlie states in this set.

The modifications required in the theory when the orbits oip 0L2 , ...

of the undisturl)ed system are not all different may easily be made.
Suppose, for exa.m|)l(^, that c*:, a,nd 0:2 are the same. '^I^hen the per-

mutation Pj 2 that causes an interchange of exj^ and must equal

unity. Only functions of the P“’s that commute with Pf2 now have
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a meaning. This, however, is sufficient for us to be able to follow

out the same sort of argument as before, and obtain a result of the

same form (29). The term in the summation in (29) that involves

the permutation uow does not occur, since it could be added on

to the term involving the identical permutation P\. For the remain-

ing terms, any two terms P% and P% must have the same coefficient

if the permutations P“ and P% can be obtained from one another

by the interchange of and cxg. This results in Sp Vp P“ commuting
with Pfg a.nd thus having a meaning. The condition Pf^ — 1 will

impose restrictions on the possible numerical values x that the x’s

can have and will reduce the number of characters.

§ 66 . Application to Electrons
Let us now consider the case when the similar particles are electrons.

This requires, according to Pauli’s exclusion principle discussed in

§ 62, that we take into account only the antisymmetrical states. It

is now necessary to make explicit reference to the spin properties of

the electrons. The effect of the spin on the motion of an electron

in an electromagnetic field is not very great. There will be additional

forces on the electron due to its magnetic moment, requiring

additional terms in the Hamiltonian. The spin angular momentum
will not have any direct action on the motion, but it will come into

play when there are forces tending to rotate the magnetic moment,
since the magnetic moment and angular momentum are constrained

to be always in the same direction. These effects are all small,

however, of the same order of magnitude as that of the relativity

variation of mass with velocity, so there would be no point in taking

them into account in a non-relativity theory. The importance of

the spin lies not in these small effects on the motion of the electron,,

but in the fact that it gives two internal states to the electron,

corresponding to the two possible values of the spin component in any
assigned direction, which causes a doubling in the number of indepen-

dent states of an electron moving in a given field. This fact has far-

reaching consequences whencombined with Pauli’s exclusion principle

.

Let us take a representation in which the diagonal observables q,.

describing the r-th electron are its three Cartesian co-ordinates x, y, z,

and the 2-component of its spin vector o-, which was introduced

in § 43. The representative of a state will now be

(^1, a?2 . . . o-j, ug . . . (r^l) = (a:o-|). (30 )
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the single variable x being written instead of a;, y, z and the suffix

z being dropped from o-^’s that occur in representatives. The exclu-

sion principle requires that (30) shall be antisymmetrical in the a:’s

and cr’s together, i.e. if any permutation is applied to the a;’s and also

to the cr’s, (30) must remain unchanged or change sign according to

whether the permutation is even or odd. In symbols

{x, cr|) = + {Px^ P^\) (^1)

for any permutation P. Thus even if we neglect the spin forces in the

Hamiltonian, we must take the spin variables into account in order to

determine what states are allowed by the exclusion principle.

If the theory of the three preceding sections is applied directly to

the case of electrons, it will not give anything of interest, since all the

allowed states are eigenstates of any permutation belonging to the

eigenvalue + 1 . We may, however, consider permutations P which

operate on the ic-variables alone in the representative of a state, and
apply our theory to these. Such permutations may also be considered

as observables. Further, they are also constants of the motion when,

we neglect the terms in the Hamiltonian that arise from the spin

forces, which neglect results in the Hamiltonian not involving the

spin observables cr. Hence with these permutations P we can again

introduce the y’s, equal to the average of all of the P’s in each class,

and assert that for any permissil)le set of numerica,! values x
y’s there will bo one exclusive set of states. ''I’lius there exist these

exclusive sets of states for systems containing many electrons even

when we restrict ourselves to a consideration of only those states

that satisfy Pauli’s principle. The exclusiveness of the sets of states

is now, of course, only approximate, since the y’s are constants only

so long as we neglect the spin forces, Tlieixi will actually be a small

pi’obal)ility for a transition from state in one set to a state in

another.

From (31) we ()l)tain
ppa ^ ± 1

, (
32 )

wher(3 P dcuiotes finy ijcrniutation which ()|)era.tes on the rr-variables

and P^ tlie same permutation operating on the a-variables in the

re])resentcitive of a state. There is thus a simple connexion between
the i^’s and i^'^’s, whicli means that instead of studying the observ-

ables P we can get all the results wo want, e.g. the characters x ^

studying the observables P". The are much easier to study on
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account of the fact that the a variables in the wave function have
domains consisting each of only the two points 1 and — 1 , which are
the two eigenvalues of each o-^. This fact results in there being fewer
characters x' for the group of permutations of the cr-variables than
for the group of general permutations, since it prevents a function
of the variables o-g, . . from being antisymmetrical in more than
two of them.
The study of the observables is made specially easy by the fact

that we can express them as algebraic functions of the observables cr.

Consider the quantity

With the help of equations (42) of § 43 we find readily that

= 3— 2(ori, a^), (33)

and hence that

^12
^ = i{f+ 2(ori, cr2)+ ((r3^, (Ta)**^} = 1. (34)

Again, we find

^12 ^Ix -= H- 0-2J
^2xOi2 == 2 {<^2x+ O-lx+ icr^y CTgs--icxis o-gy}

and hence

^12 ^Ix ~ *^2x ^12‘

Similar relations hold for o-jy and so that we have

^12 0^2 ^12
or

^12^1^12 ^2 ’

From this we can obtain with the help of (34)

^i2 0‘2<^l2 = cm
These commutability relations for with and o-g are precisely the
same as those for Pfg, the permutation consisting of the interchange
of the spin variables of electrons 1 and 2. Thus we can put

^12 ~ ^-^12 s

where c is a number. Equation (34) shows that c = + 1. To deter-
mine which of these values for c is the correct one, we observe that
the eigenvalues of Pfg Ij 1

j
— 15 corresponding to the fact that

there exist three independent symmetrical and one antisymmetrical
function of the two variables o-^g, crgg, namely, with the notation of

§ 43 , the three symmetrical functions f^i<Ti)f^{cr^),

/ct(®'i)//5(°’2)+/^(o'i)/a(°'2)> ^.nd the one antisymmetrical function
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foii^i)f^i^2 ) Thus the mean of the eigenvalues of P^,
is i. Now the mean of the eigenvalues of (oti, o-g) is evidently zero
and hence the mean of the eigenvalues of is

J-. Thus we must
have c = +1, and so we can put

l+ Co"!, Cg)} .

In this way any permutation P<^ consisting simply of an inter-
change can be expressed as an algebraic function of the o-’s. Any
other permutation can be expressed as a product of interchanges
and can therefore also be expressed as a function of the o-’s. With
the help of (32) we can now express the P’s as algebraic functions of
the (t’s and eliminate the P^^’s from the discussion. We have, since
the — sign must be taken in (32) when the permutations are inter-
changes and since the square of an interchange is unity,

^12= l+ Co’ij Vg)}. (35)
The formula (35) may conveniently be used for the evaluation of

the characters y' which define the exclusive sets of states. We have
for example, for the permutations consisting of interchanges

Xl2 X(-^12)
1 1

n{n— 1)
^r<t

If we introduce the observable -s* to descril)0 the magnitude of the
total spin angular inoinentum, in units of }l, through the
formula

o2 I _ / I X"' 1 X'^ \^ 4 \ 12 2 t ^t) **

analogous to equation (12) of Chapter VIII, we have

Hence

Xl2

zt (Tf)- -Xr (or^, or,.)

il 1— 3w.

t
' •«('«-])

J

1

71 (n— 4)-h4s2--

1 271 {71— 1

)

(36)

•essible a.s a function of the observable s and of n
the iuiml)er of electrons. Any of the otlier y’s could be evaluated on
similar lines and would have to he a function of .s* and n only, since
tliere are no other symmetrical functions of all the <j observables
wliich could he involved. 'Ihei’e is therefore one set of numerical
values X ‘^iid thus one exclusive set of states, for each
eigenvalue of ,s-. irhe eigenvalues of s are

11, In—J,

the series terminating with | or 1.
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We see in this way that each of the stationary states of a system
with several electrons is an eigenstate of s, the magnitude in units

of of the total spin angular momentum ^ 2)^ cr^, belonging to a
definite eigenvalue s\ For any given s' there will be 2s' possible

values for a component of the total spin vector in any direction and
these will correspond to 2s' independent stationary states with the
same energy. When we do not neglect the forces due to the spin

magnetic moments these 2^' states will in general be split up into 2s'

states with slightly different energies, and will thus form a multiplet
of multiplicity 2s'. Transitions in which s' changes, i.e. transitions

from one multiplicity to another, cannot occur when the spin forces

are neglected and will have only a small probability of occurrence
when the spin forces are not neglected.

We can determine the energy-levels of a system with several

electrons to the first approximation by using formula (29). If we
consider only the Coulomb forces between the electrons, then the
interaction energy V will consist of a sum of parts each referring to
only two electrons, which will result in all the matrix elements Vj>

vanishing except those for which P is the identical permutation or is

simply an interchange of two electrons. Thus (29) will reduce to

+ (37)

being the matrix element referring to the interchange of orbits

r and s. Since the P“’s have the same properties as the P’s, any
function of the P“’s will have the same eigenvalues as the corre-

sponding function of the P’s, so that the right-hand side of (37) will

have the same eigenvalues as

OT Fi— 2 ^r<s 0's)} (38)

from (35). The eigenvalues of (38) will give the first-order corrections

in the energy-levels. The form of (38) shows that a model which
assumes a coupling energy between the spins of the various electrons,

of magnitude —il^s(o'r5 the electrons in the r and s orbits,

would meet with a fair amount of success. This coupling energy is

much greater than that of the spin magnetic moments. Such
models of the atom were in use before the justification by quantum
mechanics was obtained.

If two of the orbits of our unperturbed system are the same, say
the orbits and 0L2 are the same, we must take only those eigenvalues
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of
(37 ) that are consistent with = i, or those eigenvalues of

(38 )

consistent with = 1 or Pfg ™ — 1- This means we must take
only those eigenvalues of (38 ) belonging to eigenfunctions that are
simultaneously eigenfunctions of P^^ belonging to the eigenvalue
— 1, i.e. eigenfunctions that are antisymmetrical in and o-g. Thus
we may say that the two electrons in the orbits oc^ and 0:2 have their
spins antiparallel. The case of more than two orbits the same cannot
occur with electrons.



XII

THEOKY OF RADIATION

§ 67. Theory of Einstein-Bose Assemblies
In Chapter X a theory was given of the scattering, absorption, and
emission of a particle by an atomic system. The interaction of the

particle and atomic system was assumed to be describable by an
interaction energy V appearing in the Hamiltonian, which interaction

energy had to be small bnt was otherwise arbitrary. If we could
determine the energy of interaction between a photon and an atom
or molecule, we could apply the methods of Chapter X immediately
to the case when the incident particle is a photon. In this way we
could obtain a theory of the interaction of light with an atomic
system. We cannot determine this energy of interaction directly
from analogy with the classical theory, in the way we obtained the
Hamiltonians for most of the systems dealt with up to the present,
since the phenomenon of the interaction of a photon with an atom
has no analogue in the classical theory. We must proceed in a more
indirect way. We know that the interaction of an atom with a held
of radiation can be described approximately by classical electro-
dynamics when the field of radiation consists of a large number of
photons. Our method is therefore to assume an arbitrary interaction
energy V between a single photon and the atom and then in terms
of V to investigate the interaction of a large number of photons witli
the atom. By comparmg this interaction with that given by classical
electrodynamics we can then obtain F.
Our problem now is thus to deal in general terms with the inter-

action of a large number of photons with an atom. This problem, it
is important to observe, is a generalization of that of Chapter X, in
spite of the fact that we then often considered a large number of
mcident particles. The incident particles of Chapter X were all
mdependent and each had its own scatterer. In fact they were only
introduced to help us to picture one actual incident particle inter-
acting with one scatterer. We now have a large number of actual
p otoi^ aU mteractmg with the same atom. Also our photons are
not mde^ndent of one another since, even if there are no forcesWeen them describable by an interaction energy, they are, as wesaw m the precedmg chapter, such that only states that are sym-
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metrical between them occur in nature, i.e. they satisfy the Einstein-

Bose statistics.

Let us first consider the problem of an assembly of n similar

systems of any kind that satisfy the Einstein-Bose statistics and are

all perturbed by some external field of force. If we take a repre-

sentation in which sets of observables describing the first,

second, . . . last system respectively, are diagonal, the representative

{Q.1 ^2 ' ’
' 9.n\) of any state must be symmetrical in the variables

q\, Suppose the eigenvalues of any of the g'’s, q^. say, are
g^(i), g(3)^ ^ which we assume for definiteness to be discrete.

These eigenvalues must be the same for each of the n systems, i.e.

they must be independent of r. (They will each be in general a set

of numbers, consisting of an eigenvalue of each of the set of com-
muting observables q^.) If we now have any symmetrical function of

the variables 2’2j*--^n3 G^-oh point in the domain of this function

can be specified by ng, 7^3 ,..., the numbers of ^?'’s equal to

^(2)^ ^(3)^^ respectively. The variables . .

.

will do just as

well as the variables 9'2 j • • •S'w? long as we are dealing only with
symmetrical functions. Thus the representatives of states of our
assembly satisfying the Einstein-Bose statistics may be expressed as

functions of the variables %j, instead of the variables

qzi"-^n,’ d^his change is effectively a canonical transformation to

a new rej)resentation in which the rows and columns of the matrices

are labelled by the observables %, ??.2, . . . which observables are

the numbers of systems with g^’s equal to q^'^'>
. .

.

respectively,

or, as we may say, the numbers of systems in the states q^^\ q^^\

q^’^'> .... Since the new observables 71^, n.^ . . . are functions of the

q^, (non-analytic functions, it is true), the transformation is

of the trivial kind consisting essentially of a relabelling of the rows
and columns and the only change to be made in the representative

of a state will be that arising from the change in the weights of the

different points of its domain. To determine this change we use the

condition

. .

.

(^2 • • • Qn I ((2i <72 • • <7/

from which we can infer that

IKm,...|)p==S|tog'2---3j)P> (1)

the summation in (
1

) being over all values of the q’s such that % of

them are equal to q^'^\ equal to q^'^\ and so on. The number of
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terms in the summation in (1) is n\ l{n^.n^.n^\ ...) and they are all

equal, on account of ... q^]) being symmetrical. It is thus clear

that we must take

(%TOsj...|) = \n\l7i^.nj.n^\ ... gj). (2)

The question of interest now is to express the Hamiltonian of the

system in terms of the new observables n^, % . . . . We can do
this by writing down its representative in the g-representation and
transforming to the Ti-representation. Since the transformation is of

an unusual kind, the most convenient way of making it is to write

down the whole Schrodinger equation and to transform that. This

Schrodinger equation is

••• ffj) =

173
' *

'
^'2 • • • ^2 * • * 9'2 • • • ) (^)

The Hamiltonian H is of the form

H = Z7,,

where is the energy associated with the r-th system, consisting

of its proper energy together with its interaction energy with the

external field of force, and is a function of the dynamical variables

of the r-th system only. The representative of in the g,.-repre-

sentation will be (g^m-lg^), which will be a matrix independent of

r, i.e,. the same for each of the n systems. Its elements may also be
written

(g^“^l ?7|g^^^) or for brevity. The representative of in

the complete g-representation will be

{9.1 9.2 • •• ^nWMl ••• 9'k)
=

— {9r\^r\9r)^g{ql^Q:j,q:^ \nQn‘
This makes the Schrodinger equation (3) reduce to

Q

^ 9^2 ••• 9.7X) [(^Vl 9^2 **

^A9.r){9l 9.2 ‘ 9r—l 9r 9r+l • • 9r}\ )] 3

the terms arising from the diagonal matrix elements of H being
separated from the non-diagonal ones for convenience later.

If we now make the transformation to the ?^-representation, using
equation (2), equation (4) becomes

Q
72^2 •

' I) = {9TWMr){^\ 7^2 •• *1)4-

-j-Xy l)/7lg,J^ (gj.j C^j g^.) ... 1 ... 9^7^^ -{- 1 •••I)? (5)

after removal of the factor [%! n^. nj. . . ./tz-!]^ throughout. The sum
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^ri^rV^rWr) (^) iM.e!ans a sum of terms each of the type
or the number of times this type occurs being the number of

g'’s that equal which is just Thus this sum is equal to

Again, the double sum in (6) consists of terms each of the

type [('?^6+ l)/^a]^ ^abi^i ^2 • • • '^a
— 1 • • • '^&+ 1 • • • |)

with h ^ a. The
number of times this type occurs is equal to the number of ways of

choosing r and q'^ such that q^ — q^^^ and q'^ = q^^*'>. This is just n^,

the number of ways of choosing r such that q^.
= since there is

always just one way of choosing q’r = s'"). Equation (5) thus

reduces to

^2 • • • I)
=

'^a '^aaK ^2---|)+
“i“^a ^6=f=a (^1 ^2 ^ ** '^6 "hi •••!)»

which may be written

•••I)
=

= S„6w|(m^+l— —

1

••• »6+ l •••I) (6)

if by (7^l?^2 ... — 1 ...%+! • • •
|

)

when b = a we understand simply

(^1 ^2 * • • '^a • •
•

I
) •

The eigenvalues of each of our new dynamical variables ...

are the integers 0
, 1, 2, 3 They are thus the same, apart from

the factor Ji, as those of the action variable J in the ])T‘oblem of the

simple harmonic oscillator, when the arbitrary additive constant in

this action variable is chosen as in equation (22) of § 41. Hence each

is a dynamical variable of the same nature as the action variable

of a simple harmonic oscillator and we can introduce an angle variable

w^^ canonically conjugate to it, or rather wo can introduce and
Corresponding to equations (24) of § 41 we shall have

f 1 )

Also we have that and commute with and
Tif, for h ^ a.

The new observables are defined by their matrix repre-

sentatives in a rei)resentation in which is diagonal, like the
Q-iw of § 41. From the form of these matrix representatives it follows

that when is multiplied into a ^-symbol whose representative

is {n-^ Wg ... . .

. |), the representative of the product is

('^1 ^2 * * * '
1

^ •*!)»
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and when is multiplied into this j/r-symhol, the representative of

the product is

{n-^ ... — 1 . .
. I )

for > 1

0 for = 0.

This means that when e~'^^a and are multiplied into i/f-symbols,

they are equivalent to the operations of substitution of t^^+I and
— 1 for respectively, the second substitution being understood

to give the result zero for ~ 0.

We can now express the operator on the right-hand side of (6)

explicitly in terms of the and their canonical conjugates It

is, in fact, just

Sat (%+ 1 -Sat)*

= Sat e*”’* t^atK+ 1)*®'^"’* (8)

with the help of (7). This quantity (8) is our Hamiltonian expi-essed

in terms of the new dynamical variables »a “’a- The are, of

course, just numerical coefficients.

We can easily generahze this result to apply to a more general
type of Hamiltonian, namely, that describing the perturbation of the
assembly, not by an external held of force, but by some other atomic
system, which we shall call for dehniteness the perturber, the reaction

of the assembly on the perturber being taken into account. We now
have to introduce some more dynamical variables, j3 say, to describe

the perturber. Our Hamiltonian will be of the form

H == U,,
(9 )

where the Hamiltonian that describes the perturber alone and
Uj. is the energy associated with the r-th system of the assembly,
consisting of its proper energy plus its interaction energy with the
perturber. Hp will be a function of the j8’s only and £1 will be a
function of the variables describing the r-th system and also the /3’s.

We can express the new sum in terms of the variables
by the same method as before and the result will be of the same
form (8), with the difference that the C^5 ’s will no longer be nximbers
but will be functions of the ^’s. The definition of will now be
that its representative in the ^-representation, the ^’s being any
complete set of commuting observables taken out of the /3’s, is

(10 )

the matrix on the right being the representative of in the repre-
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sentation in which and ^ are diagonal. We shall still have
commuting with the and w’s.

It is possible to express any function of the dynamical variables

that is symmetrical between all the particles in terms of the new
variables and w^. The transformation may be conveniently carried

out by considering the function of the dynamical variables to be the

Hamiltonian for some dynamical system and then writing down the

Schrodinger equation and transforming that. The general case has

been considered by Jordan.*

§ 68. Discussion of Einstein-Bose Assemblies

In the preceding section we saw how the Hamiltonian describing an
Einstein-Bose assembly, or more generally any symmetrical function

of the dynamical variables of all the systems of the assembly, can be

expressed in terms of variables w^, analogous to the action and
angle variables of a simple harmonic oscillator. This shows that an
Einstein-Bose assembly is dynamically equivalent to a set of simple

harmonic oscillators, there being one oscillator corresponding to each of

a complete set of independent states of a system of the assembly, the

quantum number of the oscillator corresponding to the number of systems

in the state.

We may replace the set of simple harmonic oscillators by a train

of waves, each Fourier component of the waves being dynamically

equivalent to a simple harmonic oscillator. Thus our Einstein-Bose

assembly is dynamically equivalent to a system of waves. This pro-

vides us with a complete reconciliation between the corpuscular and
wave theories of radiation. We may regard radiation either as an
assembly of photons satisfying the Einstein-Bose statistics or as a
system of waves, the two points of view being consistent and mathe-

matically equivalent.

We can gain a greater insight into the connexion between the

systems of an Einstein-Bose assembly by considering the limiting

case when the number of systems in each state is large, i.e. when the

ti’s are large. We introduce the observable

whose conjugate complex is

* Jordan, Zeits.f. Phys., vol. xlv, p. 774 (1927).
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This is the analogue of p—iq for the harmonic oscillator, apart

from numerical coefficients. We have

?a^a = (H)
and thus

iaia-laia = 1- (12)

We can now express the Hamiltonian (8), describing the perturbation

of the assembly by an external field of force, in terms of the |^^’s and
their conjugate complexes, the result being

The equations of motion for the |„’s are

= S, (13)

with the help of (12) and the condition that commutes with and
when a.

When the n^s are large, the ^^’s are also large and we may neglect

the unity on the right-hand side of (12). With this approximation

our observables commute with each other and may be

counted as numbers. The equations of motion (13) now become
ordinary differential equations between numbers. These equations

are identical to the Schrodinger equation for a single one of the

systems perturbed by the external field of force, the set of numbers
playing the part of the Schrodinger function (g^“^l) and being

the representative of the Hamiltonian. If this Schrodinger function

is normalized to n, it may be considered to represent an assembly of

n independent systems in the way discussed in § 56. The interpreta-

tion of the Schrodinger function, namely the interpretation of
]
(q^“^|

)

as the number of systems in state now corresponds exactly to

the interpretation of the |^’s provided by equation (11)- We thus

have the result that an assembly of a large number of similar systems

is described by the same equations^ whose solutions are to be interpreted

in the same way^ whether the systems are independent or satisfy the

Einstein-Bose statistics.

Since an assembly of independent systems and an assembly satis-

fying the Einstein-Bose statistics are two physically different things,

it may seem strange that they are both to be described by the same
set of equations, even though we are restricting ourselves to the

limiting case of a large number of systems in the assembly. The
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solution, of this paradox lies in the fact that there is an essential dif-

ference between the mathematical treatments of the two assemblies,

in spite of the similarities pointed out above, as may be seen from
the following discussion. An assembly of independent systems is

described as completely as quantum mechanics allows when we are

given the number of systems in each state. The modulus of the
Schrodinger function is then determined for each state but
not its phase. This phase has no physical meaning. We must average
over all values of this phase if it appears in the result of any calcula-

tion. On the other hand, for an assembly satisfying the Einstein-

Bose statistics, the |^^’s are observables and their phases as well as

their moduli are of physical importance. An Einstein-Bose assembly
is not described as completely as it might be unless the phases of the

^^’s are given as well as their moduli.

When we do not take the limiting case of a large number of

systems, the differences between the Einstein-Bose assembly and
independent assembly are greater. To obtain the equations for the

Einstein-Bose assembly from those for the independent assembly we
must ajDply a sort of quantization to the Schrodinger function, i.e. we
must replace the numbers composing the Schrodinger function by
observables satisfying definite commutability relations.

§ 69. Application to Photons
In applications of the above theory it is convenient to take the ^’s

to be constants of the motion for an unperturbed system, so that

the g^“)’s label the stationary states of the unperturbed systems and
the are the numbers of systems in the stationary states. In the

case of photons this means we must take the g’s to be the three

Cartesian components of momentum together with a variable speci-

fying the polarization, which variable may be taken to be the direc-

tion of the electric vector for a linearly polarized photon. The
polarization variable will now continually occur in our calculations

along with the momentum. For brevity this polarization variable

will usually not be explicitly mentioned but will be understood. Thus
when we say a certain photon has a definite momentum, it is to be

understood that it has also a definite polarization, and the set of

three variables p^^, Py, p^ (which may be abridged to p) specifying

this momentum is to be understood as containing a fourth variable

specifying the direction of the electric vector. Again, when it is said
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that an integration is made over all values of the variables Py,

a summation over the two . independent states of polarization is

implied as well.

We can apply the theory at the end of § 67 to the interaction of

a number of photons with an atom, the atom being the perturber.

The energy U for a photon will consist of its proper energy hv together

with its interaction energy with the atom, V say. Hence

^ab ~ ^^a^ab~\~^abi

Va being the frequency of a photon in the stationary state a. The
T^^’s, like the will be functions of the dynamical variables of

the atom. The total Hamiltonian, given by (9) and (8), may now
be written

B. = Hp+Xab

= Hp+Hp+Hg,

Hp being the total proper energy of the radiation and Hq the total

interaction energy.

Now photons have the peculiarity that they can be created and
annihilated, as happens whenever one of them is emitted or absorbed
by an atom, while our theory of the Einstein-Bose assembly has been
built up on the basis of the conservation of the total number of

systems. We can, however, reconcile our theory with this peculiarity

of the photons by assuming a zero state for the photons, in which
they have no momentum and energy and are not physically in

evidence. We can now say that when a photon is absorbed or emitted,

it jumps into or out of this zero state respectively, and can in this

way preserve the constancy of the total number of photons. Since
there is no limit to the number of photons that may be emitted, we
must assume the number in the zero state to be infinite, i.e. — co.

This makes the angle variable conjugate to a constant of the
motion, since

= 0 ,
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since vq and Fqq vanish and the quantities in square brackets [ ] are

of order

In order that the Hamiltonian (14) may remain finite when tiq is

infinite, V^q and Vq^ must be infinitely small. We shall suppose that

they are infinitely small in such a way that their products with n\

are finite and we shall put

Vaoino-\-l)^e-^^o =

and being two new conjugate complex dynamical variables.

We may count F^ and as functions only of the dynamical variables

describing the atom, like V^q and Tq^, since the other factors on the

left-hand sides of (15) are constants of the motion (Uq being effectively

constant since changes in Uq are small compared with tIq) and have

no physical significance. The interaction energy Hq in (14) may now
be written

HQ
. . . (16 )

the values a = 0, 6 = 0 being understood to be excluded from the

summations here.

A photon has a continuous range of stationary states and not a

discrete set, since its components of momentum may have any values

from — oo to oo. We therefore have to change the sums in (16) into

integrals. To do this accurately would not be very easy, since it

would mean dealing according to quantum mechanics with a dynami-

cal system with continuously many degrees of freedom, which would

require a new scheme of notation and a new mathematical technique.

We are, however, interested in the interaction energy (16) mainly

with regard to the limiting case of large n’s, when classical mechanics

may be assumed to apply for the radiation, since we wish to compare

the interaction energy in this case with that provided by classical

electromagnetic theory and thus obtain exxiressions for the P^’s and

F^;,’s. In this limiting case the passage from sums to integrals is

quite easy.

Let o-^ denote the number of states of the photon (with a particular

polarization) per unit of momentum space about the momentum p^.

We assume to be large, but an arbitrary function of p^, and

investigate the limit of (16) when is made infinite. The number
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of photons (with a particular polarization) per unit of momentum
space about the momentum is

r]a = naCr^,

provided varies in some roughly continuous way from one state

to the next. Let be the matrix* representing the inter-

action energy V for one photon in the ordinary ^-representation for

that photon. This ordinary -representation differs from the one we
have used up to the present in this chapter, in which V is repre-

sented by only through the weight function. In the former

representation the weight attached to a small domain momen-
tum space is just while in the latter it is the number of discrete

states in this domain, which is cr^hp^. The weight function is thus

changed by a factor o-^. The rule at the end of § 24 now shows that

the matrix elements in the two representations are connected by

= (17)

Similarly the matrix elements (i^'lFjO), (0|F|p'), referring to transi-

tions into or out of the zero state, are connected with and by

(pC“)|F|0) == V^al (0|Fb(«)) = Kal
We can now express the interaction energy (16) in the limiting

case of large ^’s, when the n's may be assumed to commute with

the w’s, in the form

Hq = Xa {(23(«>lFlO)7?|e^-«-f (0lFb<«))7^^e--aK^

= J {(p<«)lF|0)7^*e^^^’a-f (0|F|p(«))7^te-^«’»} dp^-\-

+JJ dp, dp, (18)

in the limit a~^ co. The fact that the a’s have disappeared from this

result justifies our method of dealing with a continuous range of

states as a Limiting case of a discrete set.

§ 70. Determination of the Interaction Energy between a
Photon and Atom

We shall now determine the matrix elements (p^“^l FjO), (0| V\p^^^), and
(p(a)|

]3y comparing (18) with the classical expression for the
interaction energy between an atom and a field of radiation. For

* The matrix elements of this matrix are actually functions of the dynamical
variables describing the atom, like the F^s’s, and not numbers, but this does not
invalidate the argument. The representation is an ‘ incomplete ’ one, the representa-
tives being defined in terms of those of a complete one by equations like (10).
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simplicity we shall suppose the atom to consist of a single electron

moving in an electrostatic field of force. The field of radiation may
be described by the 4-vector potential, which is to a certain extent

arbitrary and may be chosen so that its time component vanishes.

The field is then completely described by the magnetic potential

A^, Ay, or A. The change that the field causes in the Hamiltonian

describing the atom is now, as explained at the beginning of § 48,

1

2m
— (p, A) -j-

mc^ 2mc^
A2

g= -(x, A)-+-
G 2mc^

A2. (
19 )

This is the classical interaction energy, which is to be compared with

(18). The A that occurs here ought really to be the value of the

magnetic potential at the point where the electron is momentarily

situated. It is, however, a good enough approximation if we take

this A to be the magnetic potential at some fixed point in the atom,

such as the nucleus, provided we are not dealing with radiation whose

wave-length is small compared with the dimensions of the atom.

To make the comparison .between (18) and (19) we must first

resolve the field of radiation into plane progressive waves. The

electric and magnetic fields of one of these waves, whose frequency

is V and whose direction is specified by the momentum p of the

associated photons, are of the form

cos[(x, p)//i+27rvi+yp], cos[(x, p)//t-l-27rx'^+yj,

the amplitudes and being vectors of equal length that are

perpendicular to the direction of motion and to each other . The total

electric and magnetic fields are expressible as Fourier integrals of

the form
= J Sy cos[(x, p)//i-i-27rv^+yj d'p

cos[(x, p)lfi-\-^'TTvt-\-yp\ dp,

Sy, and being definite functions of the momentum p.

We must obtain the distribution of energy of this field over the

various Fourier components. At time if — 0 we have

J = JJ {By, By,) dp dp' J cos[(x, p)//i+yp]cos[(x, p')//^d-yp'] dx

== JJ {By, By.) dp dp'

.

-|/^*{cos(y^+y^0^(2^+i^')+
-\-QO^{yy~-yy.)^p--p')},
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the integration with respect to x here being similar to that with
respect to q performed in § 36. Thus

Similarly
^ ^ ^ ^-p)cos(y^+y_^)+<e2

}

5 j dp.
On account of the connexion between the vectors
Ti ^
have

and we
% and also {S^, e_„) = — Hence the total

energy is

I/Stt. J
(<e2_|_^2) _ ^3^3^ J ^2

and the energy per unit of momentum space is jSir. This may
be equated to hv^'q^, the rj having the same meaning as in the pre-
ceding section. Thus

87Th-^V^7}^.

The vector potential A may be expressed as a Tourier integral in
the same way as S and We shall have

A = —J sin[(x, p)/^fc+ 277viH-y^] dp, (20)
the vector A^, being in the same direction as and having its length
given by > o

(21)

At the origin A will have the value
A = —JA^ sin[27Tvj?-l-y^] dp = f cos w.j, dp,

being an angle variable of the same nature as those occurring in
(18). This value for A substituted in expression (19) for the inter-
action energy gives

e/c./(x, A^)cosii)^c?p-fe2
/2^c2

_jj A^y)cos^^; cos?/i^, dp dp'
^ /c%\ X r* T ^e/2y r 1 .

+
'nmlv II^5^

with the Mp of (21), where x^ is the component of x in the direction
^

TJ!^
a-ngle between the vectors A, and A

^//ff
^ instead of go^w and com-pare it with (18), we obtain

(p|F|0) = (0|F|p) =
h {27TV^)k'^^

{p\V\p') = n

27Tmh^ *4^'
’

(23 )
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We also find that there are certain terms in (22), namely, those

involving ex.-p i{w^-\-w^>) or exp — which have no corre-

sponding terms in (18). This discrepancy shows the inadequacy of

the assumption that the Hamiltonian describing the interaction of an
assembly of photons with an atom is of the form (9). The extra

terms in (22) would correspond to transitions in which two photons

are simultaneously absorbed or emitted and the possibility of such

transitions requires a more complicated interaction energy than that

assumed in (9). The physical effects of these terms are, however,

small and unimportant, and so we shall neglect them.

Equations (23) now give the interaction energy V between a single

photon and the atom. This interaction energy cannot conveniently

be expressed explicitly in terms of dynamical variables. We can get

a complete representation of V by introducing a Heisenberg repre-

sentation for the variables describing the atom. If the different

stationary states of the atom alone are denoted by a', ol", ..., we
shall have

(pa'|F|0a") = (Ocx'lFlpa")
e 1

h \2ttv^)
a)

ipw\ V\pV) = cos

Each p here is, as before mentioned, to be understood as including

not only the three Cartesian components of momentum of the photon
but also a polarization variable specifying a direction of electric force.

The matrix element (a;'|:i:^^|a") is the component of the vector (a'|x|a")

in the direction of the electric force specified by p and similarly

is the angle between the directions of electric force specified by p'

and p".

§ 71. Emission, Absorption, and Scattering of Radiation
We can now determine directly the coefficients of emission, absorp-

tion, and scattering of radiation by substituting in the formulas of

Chapter X the values for the matrix elements given by (24). Eor the

case of emission we can use formula (56) of Chapter X, This shows

that for an atom in a state a the probability per unit time per unit

solid angle of its spontaneously emitting a photon and dropping to

a state a" of lower energy is

4772 WP e 1

h h {27rv)i
(25)



232 §71THEORY OF RADIATION
Now the energy and momentum of a photon of frequency v are

W = hv P = hvlc.

Again from the Heisenberg law (48) of Chapter VI

{(x'\Xp\oc") = 27Tiv(oi'cX.")((x'\Xp\(x")y

v{oc'oc") being the frequency connected with transitions from state oc'

to state a", which in the present case is just the frequency v of the

emitted radiation. These results substituted in (25) make the emis-

sion coefficient reduce to

(^lK|ea=^|a")P. (26)

To obtain the rate of emission of energy per unit solid angle we must

multiply this by Tiv. If we now integrate over all solid angles, we

shall obtain for the total rate of emission of energy

4 (27tv)4

3 c3
l(a'lex|a")r-^. (27)

This is in agreement with expression (50) of Chapter VI and justifies

Heisenberg’s assumption for the interpretation of his matrix ele-

ments.

In the same way the absorption coefficient, given by formula (59)

of Chapter X, becomes for photons

4.7r^h^W

c^P

e 1

Jl (27rv)^
{(x\Xp\oL')

877® V
\{(x'\eXp\oc")\^.

This absorption coefficient refers to an incident beam of one photon

crossing unit area per unit time per unit energy range. If we take

one per unit frequency range instead of energy range, as is usual

when dealing with radiation, the absorption coefficient becomes

8y^
he

\{oc'\eXp\o6")\

This result is the same as (24) of § 53, if we substitute for the

there the energy hv of a single photon. Thus the elementary theory

of § in which the radiation field is treated as an external perturba-

tion, gives the correct value for the absorption coefficient. The average

absorption for all directions of motion and of polarization of the

incident beam is

Stt® V
j(a'|ex|o.")P,

3 ch
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which is just equal to the emission coefficient (27) divided by the

factor SttAv^Ic^. This ratio for the absorption and emission coefficients

may be verified by elementary statistical arguments.

Let us now consider scattering. The true scattering coefficient is

given by formula (38) of Chapter X. Such scattering of photons will

not be accompanied by any change of state of the atom on account of

the factor in the expression for the matrix element (p'a'| V\p"ol')

in (24). Thus the final energy W* of the photon will equal its initial

energy W^. The scattering coefficient now reduces to

. cos^

This is the same as that given by classical mechanics for the scattering

of radiation by a free electron. We thus see that the true scattering of

radiation by an electron in an atom is independent of the atom and
is correctly given by the classical theory. This result, it should be

remembered, holds only provided the wave-length of the radiation

is large compared with the dimensions of the atom.

The true scattering is a mathematical concept and cannot be

separated out experimentally from the total scattering, given by
formula (44) of Chapter X. Let us see what this total scattering is

in the case of photons. A modification must now be made in the

application of formula (44) of Chapter X. The summation in this

formula may be considered as representing the contribution to the

scattering of double transitions consisting of transitions firstly from

the initial state to state Jc and secondly from state k to the final

state. The first transition may be an absorption of the incident

photon and the second an emission of the required scattered photon,

but it is also possible for the first transition to be the emission and

the second the absorption. It is clear from the general nature of the

method used for deriving formula (44) of Chapter X that both these

kinds of double transitions must be included in the summation X*
when this formula is applied to photons, although only the first of

them was taken into account in the actual derivation given in

Chapter X.
For the double transition of absorption followed by emission we

must take, using zero, single prime and double prime to refer to the

initial, final, and intermediate k state respectively,

(^^l
V\p^OL^) = (Oa'lFlpOaO) (pV] V\k) = (i?V| FlOa")

E—Ej, = hv^-\-Hp{oc^)—Hp{a'') = hiv^—v{<x"0L^y\,

H h3595
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where is the frequency of the incident photon and

hv{<x"oP) = Hjp{ol')—Hp{oiP).

Similarly for the double transition of emission followed by absorption
we must take

{k\ V\p^ofi) = F|Oa«) (p'a'I V\k) = (0a'| V\p^oi")

E—Ej, = hv^-\-Hp{oc^)—Hp{oc")—hv^—hv' = —h\y'+v{cx"oc^)-\,

where v' is the frequency of the scattered photon, there being now
two photons, of frequencies v® and v', in existence for the intermediate
state k. The expression for the scattering coefficient now reduces to

v'

1/0

h
cosm 6 S 0 .-l-S [

(cx )(oc [XqIcx^)
01 a a + ex"

I

(a'
I

iCo
I

a" ) (od"
I

itq
I

exO)

'

where Xq and Xj have been written for x^o and x^>, the components of
X in the directions of the electric vectors of the incident and scattered
photons, and 6^^ has been written for the angle between these
electric vectors. If we write (28) in terms of x instead of x, we get

(27re)4 v'

vO

9i

27rm
Xoc^^OCOi MoL ocP)\^~-±- j^ '±-^1 i

I
— '%){ nj 1

(29)

jyO— v{oi'oi^^

v'^v(cx"oP)
J

:

We can simplify (29) with the help of the quantum conditions.
We have

x-^Xq XqX^ = 0
,

which gives

Xq," {(a l^ija )(a"|a;o|Q:0)— (a'la;Q| a'')(Q;"|irj|aO)]. == 0, (30)
and also

^1^0 ^^0^1 = = iklm. cosdQ^,
which gives

Xa«{(a [iCila ) .v(a"a0)(Q,"|^^|^0j— v(a'a'')(a'|rrQ|a")
. (cx''|.ri|a:0)J

~
1 in

COS^OI^cOq,^ = n
cos ^01 Sq^Oq,,. (31)2774 m 27Tm

Multiplying (30) by v' and adding to (31), we obtain
XQ,-{(a'|a;i|a")(a''|a;o|aO)[v'+v(a'V)]— (a'|a;o|a'0(a''|xi|odO)[F+v(aV0]}==

= ^/27rm. COS^Ol^cx^a'-
If we substitute this expression for i^/277m . cos

6>oi in (29), we
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obtain, after a straightforward reduction making use of identical

relations between the vs,

This gives the scattering coefficient in the form of the effective area

that a photon has to hit per unit solid angle of scattering. It is

known as the Kramers-Heisenberg dispersion formula, having been

first obtained by these authors from analogies with the classical

theory of dispersion.

The fact that the various terms in (29) can be combined to give

the result (32) justifies the assumption made in deriving formula (44)

of Chapter X, that the matrix elements (p'a'
|

F|p"a") of the interaction

energy are of the second order of smallness compared with the

{p'oL\V\h) ones, at any rate when the scattered particles are photons.

§ 72 . Einstein ’s Laws of Radiation
In the preceding section we determined the probability coefficients

for absorption, emission, and scattering of a photon by an atom. We
were there concerned with only a single photon interacting with the

atom (or at most with two), the interaction energy being given by

(24). To complete our theory of radiation we require to know the

laws governing the interaction of a number of photons with the atom.

If the atom is exposed to an incident beam of radiation containing

many photons, how do the absorption, emission, and scattering

probabilities depend on the intensity of this beam ?

This question cannot, of course, be answered simply from a con-

sideration of the interaction energy, defined by (24), for a single

photon. We have to fall back on the general interaction energy (16)

for a number of photons, and this requires incidentally that we must
perform the passage from sums to integrals once again. We make
use of the general result (28) of § 54, according to which a transition

probability is proportional to the square of the modulus of the matrix

element of the perturbing energy that refers to this transition.

Let us consider an absorption process in which the number of

photons in state a is reduced from to — 1, the atom simul-

taneously jumping from state a® to state a'. The probability of such

a process will be proportional to the square of the modulus of the

matrix element

(n^Wg ... ... — 1 ... a')
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of the total interaction energy Hq. The only term in the expression

(16) for Hq which can contribute to this matrix element is

This matrix element is thus proportional to n\ and the transition

probability is proportional to n^. The passage from sums to integrals

is now quite trivial, the final result being that the probability of an
absorption process is proportional to the intensity of the incident

radiation.

Similarly for an emission process, in which the number of photons

in state a is increased from to we must consider the matrix

element

{n^n^ ... ... 0L^\HQ\n-^n2 ... ... a').

The only term in expression (16) that contributes to this is

This matrix element is thus proportional to (?^a+ 1)^

and the transition probability to 1- the same way a scattering

process, in which the number of photons in state a is decreased from
to n^,— 1 and that in state h is increased from % to is due

to the term (n5+ l)ie~'^^6, if it is a true scattering process,

and to the" product of the two terms and 1^ ('?^^+ l)ie~*'’*,

if otherwise. The scattering probability is thus in any case propor-

tional to 92^(715

1

). To interpret these results we must now make
an accurate passage from the discrete to the continuous ranges of

stationary states for the photons.

Suppose we have a distribution of photons over the discrete

states a. To obtain the density of these photons (in ordinary space)

we may suppose them to be represented by a Schrodinger function
(p(a)|) _ transform this Schrodinger function to the {x, y, z)-

representation by means of the transformation function This
transformation function must now have the value

(cc|p(a)) —

differing from the value given by (36) of Chapter VI by the factor
or“i, on account of the weight function of our present ^-representa-

tion differing from that of the usual one by the factor a„, as was
discussed in obtaining equation (17). Thus

(0^1) = 2:„(a:|p(«))(i9(«)|) = cT-h

Suppose has the value unity for one state p and zero for all the
others. We shall then have

{x\) = h-^ o-^.
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and the density of photons will be

For an arbitrary distribution of the photons over the discrete

states a, the photon density will be given by addition of the con-

tributions from each state and will therefore be

Thus the number of photons per unit volume per unit of momentum
space is corresponding to an energy volume

per unit of momentum space. The intensity per unit frequency

range, equal to c times the energy density per unit solid angle per

unit frequency range, is therefore

4 = 'n-a-

The probability for an emission process, which we found was pro-

portional to w^+1, is thus proportional to I^+hvlJc^. This means

that with no incident radiation there is still a certain amount of

emission (which is, in fact, given by expression (26)), but that the

emission is increased or stimulated by incident radiation in the same

direction and having the same frequency (and state of polarization)

as the emitted radiation under consideration. Our present theory of

radiation thus completes the imperfect one of § 53, and gives a ratio

for the stimulated and spontaneous emissions in agreement with

Einstein’s laws of radiation discussed at the end of § 53.

The probability for a scattering process from state a to state 5,

which we found was proportional to same way

proportional to /^(/^+/M/f/c^). Thus the scattering of radiation is

also stimulated by incident radiation in the same direction and having

the same frequency as the scattered radiation. The stimulation

phenomenon is, in fact, a general one, as has been shown by Einstein

and Ehrenfest from general statistical arguments.

* Einstein and Ehrenfest, Zeits.f. Phys., voL xix, p. 301 (1923). See also Pauli,

Zeits.f. Phys., vol. xviii, p. 272 (1923).
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RELATIVITY THEORY OF THE ELECTRON

§ 73. Relativity Treatment of a Single Particle

Our theory of special dynamical systems from Chapter VI onwards

was essentially non-relativistic. We worked all the time with one

particular Lorentz frame of reference and did not make it an essential

requirement of the theory that its results should be independent of

this frame. Let us now inquire into what sort of modifications we
may expect relativity to introduce.

It is fairly certain that the general theory of states and observables

developed in Chapters II-V will apply also to relativity treatments

of dynamical systems. We are faced with the problem, however, of

deciding with what observables we shall now work. There are serious

disadvantages in taking these observables to be the values, say, of

dynamical variables ^ at the time t. If the ^/s occur in our analysis,

they would have to appear on the same footing as the the values

of the ^’s at the time r in some other Lorentz frame. We should

therefore require to know the relations between the |/s and the ^^’s,

and these would in general be very complicated and artificial, as they

would require us to connect distant parts of space-time. In any case

the ^f’s are not quantities that could easily be observed and we
should not expect them to play any fundamental role in the theory.

A possible way out of the difficulty would be to build up a purely

field theory and to take as observables the values of the field quan-

tities at definite points in space-time. This appears to be the most
straightforward way of dealing with general dynamical systems on

relativity lines, but it involves complicated mathematics and a])pears

to be too difficult for practical application.*

The difficulty of a relativity treatment becomes much less severe

when one confines one’s attention to the problem of a single particle

moving in a given field of force. If we now take a representation in

which the observables Xi, 2/^, 2^ specifying the position of the particle

at time t are diagonal, we have as the wave function representing

a state a function {xi yt^n) three variables Xi, yi, z, depending
on the parameter t, which is the same as a function {xyzt

\

)

of the four

variables x, y, 2, t. The domain of our wave function thus becomes

* See Heisenberg and Pauli, Zeits.f. Phys., vol. Ivi, p. 1 ; vol. lix, p. 168 (1929).
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identical with the ordinary space-time continuum, and this circum-

stance makes possible an elementary treatment of the problem and
allows us to use considerations which cannot be extended to more
general dynamical systems. We may expect, for instance, the physi-

cal conditions at any point in space-time to depend only on the value

of the wave function at that point and neighbouring points, and thus

the wave function, if not actually invariant under a I-iOrentz trans-

formation, should transform according to simple laws.

Let us now see how we can bring the momentum of the particle

into the theory. The value of a component of momentum at a speci-

fied time is an observable of a rather artificial kind, even in the case

of a system with a single particle, and we should not expect it to

play an important role. This observable, we saw in § 36, is connected

with a certain space-displacement operator, which, when it operates

on any wave function, produces at the specified time, just a spatial

displacement, the value of the new wave function at any other time

being then determined by the wave equation. It would seem more
natural in a relativity theory to deal with an operator which pro-

duces at all times simply a spatial displacement of the wave function,

such an operator being essentially a simple partial differentiation of

the type djdx of the wave function {xyzt\) in four variables. The
result of such an operator operating on a wave function is a new
wave function which in general does not satisfy the wave equation

and hence does not represent a state of the system, so that this

operator is not an observable. All the same we may expect the

operator — ihdjdx to play the part of a momentum in the theory, in

spite of the fact that since it refers to momentum in general and not

momentum at a particular time, we can give no precise meaning to

an observation of it.

Thus we are led to introduce the operators

Px
d

dx PV

and also the corresponding

W = ifi

r ^
h—
dy

a

( 1 )

(2 )

referring to time displacement, to play the part of momentum and
energy. They can operate on any wave hmction, but since the result

of such operation does not satisfy the wave equation and does not

represent a state, they are not observables. All the same they may
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be used in algebraic analysis like observables and will satisfy all the
axioms of ordinary algebra except the commutative law of multi-
plication. The complete algebraic scheme of Chapter II will not,
however, apply, since we cannot interpret cjxxijj as a number when a
is an operator of this more general kind. It will be more convenient
in the present chapter to regard the symbols ip, p, &c., not in the
abstract sense of Chapter II, but as wave functions and linear
operators in the x, y, z, t representation.

§ 74. The Wave Equation for the Electron
Let us consider first the case of the motion of an electron in the
absence of an electromagnetic field, so that the problem is simply
that of the free particle, which was discussed in § 39. The Hamil-
tonian for this system provided by classical mechanics is given by
equation (1) of § 39, and this leads to the wave equation (5) of that
section. This wave equation may be written

{IT/c— (3)

where H and the p’s are to be interpreted as operators in accordance
with equations (1) and (2). Equation (3), although it takes into
account correctly the variation of the mass of the particle with its
velocity, is yet unsatisfactory from the point of view of relativity,
because it is very unsymmetrical between W and the p’s, so much so
that one cannot generahze it in a relativistic way to the case when
there is a field present. We must therefore look for a new wave
equation for the free particle.

If we multiply the wave equation (3) on the left by the operator
{Tr/c-l-(m2 c2-j-p 2 _|_p 2 _|_^2)ij.^ obtain the equation

= 0
, (4 )

which IS of a relativisticaUy invariant form and may therefore more
conveniently he taken as the basis of a relativity theory. Equation
(4) is not completely equivalent to equation (3) since, although every
solution of (3) is also a solution of (4), the converse is not true. Only
those solutions of (4) belonging to positive values for W are also
solutions of (3).

The wave equation (4) is not in agreement with the general laws
of the quantum theory on account of its being quadratic in W. In
§ 7 we educed from quite general arguments that the wave equa-
tion must be linear in the operator Sjet or W, like equation (43) of
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that section. We therefore seek a wave equation that is linear in TFand
that is roughly equivalent to (4). In order that this wave equation

shall transform in a simple way under a Lorentz transformation, we
try to arrange that it shall be rational and linear in Py, and p^ as

well as in W

,

and thus of the form

= 0, (5)

where the a’s and p are independent of W and the p’s. Since we are

considering the case of no field, all points in space-time must be

equivalent, so that the operator in the wave equation must not
involve x, y, z, or t. Thus the a’s and /S must also be independent of

X, y\ z, and t. They must therefore denote some quite new dynamical
variables, which may be pictured as describing some internal motion
in the electron. We shall see later that they just describe the spin

of the electron. The a’s and ^ must, of course, commute with W and
the p’s and also with x, y, z, and t.

Multiplying (5) by the operator {TT/c—a^p^

—

°^vPy
—^zPz—

the left, we obtain

This is the same as (4) if the a’s and ^ satisfy the relations

a^ 1 } ^ ’

— a^ /3-|-/3a^ = 0,

together with the relations obtained from these by permuting x, y,

and z. If we write
/3 a,^ me,

these relations may be summed up in the single one,

a^a^-l-a^a^= 28^^ (/x, v= a;, y, s, or m). (6)

The four a’s all anticommute with one another and the square of

each is unity.

Thus by giving suitable properties to the a’s and ^ we can make
the wave equation (5) equivalent to (4), in so far as the motion of

the electron as a whole is concerned. We may now assume (5) is the

correct relativity wave equation for the motion of an electron in the

absence of a field. This gives rise to one difficulty, however, owing

to the fact that (5), like (4), is not exactly equivalent to (3), but

allows solutions corresponding to negative as well as positive values

of W. The former do not, of course, correspond to any actually

observable motion of an electron. For the present we shall simply
3595 T i
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evade the diffictilty hy ignoring the negative-energy solutions. Their

proper physical interpretation will be discussed in § 79.

We can easily obtain a representation of the four a’s. They have
similar algebraic properties to the o-’s introduced in § 43 to describe

the spin of an electron, which a’s can be represented by matrices

with two rows and columns. So long as ‘we keep to matrices with
two rows and columns we cannot get a representation of more than
three anticommuting quantities, and we have to go to four rows and
columns to get a representation of the four anticommuting a’s. It

is convenient first to express the a’s in terms of the o-’s and also of

a second similar set of three anticommuting observables whose
squares are unity, Pi, p2 , pz say, that are independent of and commute
with the o’s. We may take, amongst other possibilities.

Pi Pi ^2/’ Pi P3’ (^)

and the a’s will then satisfy all the relations (6), as may easily be

verified. If we now take a representation with p^ and diagonal,

we shall get the following scheme of matrices

:

"0 1 0 0" '0 — i 0 0" "1 0 0 0"

1 0 0 0 i 0 0 0 0 — 1 0 0

0 0 0 1 0 0 0 —

%

0 0 1 0

lo 0 1 0 0 0 i 0 0 0 0 — 1

"0 0 1 0"
P2==

"0 0 —

i

0"
Ps “ ^1 0 0 0"

0 0 0 1 0 0 0 —

%

0 1 0 0

1 0 0 0 i 0 0 0 0 0 - 1 0

0 1 0 0^ 0 i 0 0^i

0 0 0 — 1

Corresponding to the four rows and columns, the wave function must
have four components. We saw in § 43 that the spin of the electron

requires the wave function to have two components. The fact that
our present theory gives four is due to our wave equation (5) having
twice as many solutions as it ought to have, half of them corre-

sponding to states of negative energy.

With the help of (7), the wave equation (5) may be written in the
vector form

{W/c-f-pi (cr, P)+Pzmc}ip = 0.

To generalize this equation to the case when there is an electro-

magnetic field present, we follow the classical rule of replacing W and
p by W-\-eAQ and p-j-e/c.A, Aq and A being the scalar and vector
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potentials of the field at the place where the electron is. This gives

us the equation

|~ + --^0 “h Pi P 4“ - + /Dg ??7c| i/f = 0, (8)

which is the fundamental wave equation of the relativity theory of

the electron. The conjugate imaginary equation

must be treated on the same footing as (8). The operators W and p
in (9), which operate to the left, must be interpreted, according to

§§ 36 and 37, as having the meanings in equations (1) and (2) with
the signs reversed.

§ 75. Invariance under a Lorentz Transformation
Before proceeding to discuss the physical consequences of the wave
equation (8) or (9), we shall first verify that our theory really is

invariant under a Lorentz transformation, or, stated more accurately,

that the physical results the theory leads to are independent of the

Lorentz frame of reference used. This is not by any means obvious

from the form of the wave equation (8). We have to verify that, if

we write down the wave equation in a different Lorentz frame, the

solutions of the new wave equation may be put into one-one corre-

spondence with those of the original one in such a way that corre-

sponding solutions may be assumed to represent the same state. For
either Lorentz frame, the square of the modulus of the wave function,

summed for the four components, gives the probability per unit

volume of the electron being at any given place in that Lorentz
frame. This probability is of the nature of an electric density (and

will be called the electric density in future, for brevity), and its

values, calculated in different Lorentz frames for wave functions

representing the same state, should be connected like the time com-
ponents in these frames of some 4-vector. Further, the 4-dimensional

divergence of this 4-vector should vanish, signifying conservation of

charge, or that the electron cannot appear or disappear in any
volume without passing through the boundary.
For discussing Lorentz transformations it is convenient to make

a slight change in our notation. We shall use the suffixes 1, 2, 3

instead of x, y, z and shall put 'p^ for Wjc, and we shall also use the
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convention that terms containing a repeated suffix are to be summed
over the values 0 ... 3 for that suffix. We can now write equation (8)

in the form
+ = (10 )

ocq being equal to unity, and similarly we can write equation (9) in

the form

We now apply a Lorentz transformation and denote quantities

referring to the new frame by a star. The components of the 4-vectors

p and A will transform according to a linear law of the type

= = (12 )

Substituting these expressions for and in equations (10) and
(11), we obtain

{<^f,a,^^{p*+elc.A*)+a.„,mc}ilj = (i (13)

= 0. (14)

We now try to bring these equations back to the form of the original

(10) and (11) by introducing a new wave function j/i*, whose four

components are linear functions (with constant numerical coefficients)

of the four components of the original This means that is

connected with ift by an equation of the type

^is^ = y^ls, (15)

where y is an operator, Hke the od’s, which can be represented as a
matrix with four rows and columns. The conjugate imaginary equa-
tion to (15) is

<5^* = </>y.

Equations (13) and (14) will go over into the equations

r = 0 (16)

<^*{a„(i9*-|-e./c. A*)-fa:^mc}y = 0 (17)

provided we can choose y such that

ya^ay = ^a^^, y^mV = (18)

These equations (16) and (17) are of the same form as (10) and (11),
as required, since one can divide out by the extra factors y and y.
In order to verify that we can always choose y to satisfy equa-

tions (18), let us first take the special case when the change of our
frame of reference consists simply of a rotation through a hyperbolic



245§75 KELATIVITY TRANSFORMATIONS
angle d in the xt plane, so that the transformation equations for the
components of a 4-vector are of the type

Po = Pq cosh 0+^1 sinh 6

Pi = Po sinh cosh 6 K19)
P2=P2> Pi = P3-

The values of the may he written down at once from a com-
parison of these equations with (12). With these values for the
it is easy to see that equations (18) hold when we take

y == eidoc^ — y^ (20 )We have, in fact.

yoiQ y = yy
= l+ 0ai+02a2y2!4-03o,3y3i_|_

On account of cx| — 1, this reduces to

yo^Q y = 1 “j— 0^/2! 0^/3! -j— • •

= cosh ^ sinh 6

= cxq cosh ^ -h ocj sinh 6.

Again, y = oii yy = sinh cosh 6.

^Further, y'^^Y ~
since anticommutes with oc^, which results in cx2f(^i) ~ f(— ‘^1)^2

for any function /(a^) of oc^. Similarly

yag y = Odg, y y =
Thus the five equations (18) hold with y given by (20) when the

are given by (19).

As a second typical change of the frame of reference, we may con-

sider a rotation through an angle 0 in ordinary space about the x-axis.

The transformation equations are now

Po = Po Pl=Pl
P2 = P2 cos 0-\-p^ sin 6

Ps = —Pt sin 6+pt cos 6.

With the new values for the we can easily verify that equations

(18) hold with

y ^ Q-iOoL^oc.^ y

the analysis being very similar to the preceding case.

If two changes of the frame of reference are made consecutively,

we simply have to multiply the corresponding y’s to get the y for

the resultant change. Now any change of the frame of reference may
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be built up from two rotations of the types we have considered, and

hence there will always be a y satisfying (18).

In this way we see that the solutions of the wave equation in the

new frame of reference, equation (16), can be put into a natural one-

one correspondence with those of the original wave equation (10),

corresponding solutions being connected by (15), and we may assume

that corresponding solutions represent the same state. It remains

for us to verify that the electric density transforms like the time

component of a 4-vector and that the divergence of this 4-vector

vanishes.

We shall introduce the notation </>,. . if/g to denote the sum of the

product of each of the four components of cf>^ with the corresponding

component of i/fg. In the same way . r]ip, where ^ and rj are any

linear operators that can operate on the wave functions, will denote

the sum of the product of each component of <f>^
with the corre-

sponding component of Our new symbols of the type . rjifs are

functions of x, y, z, and t, and are quite distinct from the products

of Chapter II, which products, we have seen, have in general

no meaning for the more general type of linear operator with which

we are now dealing. It should be noted that

<f>
. OLlp == cjxX .Ip (

21 )

when oc is one of the a’s in the wave equation, or more generally

when it is any operator which means simply taking four linear func-

tions (whose coefficients are numbers or functions of x, y, z, and t)

of the four components of the wave function.

We can now express the electric density as <^ . j/f, which is the same

as <p .oiQip or (poiQ
. p since ocq = 1. Let us see how the four quantities

(p .cx^p, with ;u, = 0 . .

.

3, transform under a Lorentz transformation.

We have, from (15) and (18),

p* .OL^p^ = py . oc^yp = p .
yoi^yp

= P=iP-
Comparing this result with (12), we see that the four quantities

p .oi^p transform like the covariant components of a 4-vector. The
contravariant components will be

p.p, —p.OC^p, p.OCQ^p, —p.cx^p.

This verifies that our electric density p .p io. the time component of

a 4-vector and that the corresponding space components are —p . cxj.p

(with r = 1, 2, 3). These space components give the electric curi'ent.
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or, more accurately, the probability of the electron crossing unit area

per unit time.

The divergence of our 4-vector is

where Xq denotes ct and the dr: sign means that the sign is to be

taken for ju, = 0 and the —
- sign for = 1, 2, 3 before one does the

summation. To prove this divergence vanishes, multiply equation

(10) by ^ and (11) by ifx, taking the sum over the four components

in each case, and subtract. The result is

^ ’A—

the other terms cancelling on account of (21). With the help of

(1) and (2) this gives

0 .

> IX ^

which just expresses the vanishing of (22). In this way we complete

the proof that our theory gives consistent results in whichever frame

of reference it is applied.

§ 76. Existence of the Spin

In § 74 we saw that the correct wave equation for the electron in

the absence of an electromagnetic field, namely equation (5), is

equivalent to the wave equation (4) which is suggested from analogy

with the classical theory. This equivalence no longer holds when

there is a field. By treating the correct wave equation for this case,

namely (8), in the same way as we treated (5) and comparing it with

the wave equation to be expected from analogy with the classical

theory, namely

{(?
+ (** +

®

in which the operator is just the classical relativity Hamiltonian, we

may expect to get an indication of the new physical features of the

present theory.

W^e must multiply (8) by some factor on the left to make it re-

semble (23) as closely as possible. Taking this factor to be

^ — Pi ^or
, p Ps
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§ 76

^cr, p -j-

1

248

we get

{(?+ f P + 5^) - + Pi [(t

-("’P+sA)(^+ f^„)]j^ = 0. (24)

We now use the general formula that, if B and C are any two vectors
that commute with <t,

(or, B)(cr, G) = {o-| G^+o-^ ay Gy+<yy Cf^ By C^}

= (B. G)-j-«. X^y^ a^ (B^ Cy—By C^)

= (B, G)-l-i(<r, Bx G).

Taking B = G = p+e/c . A, we find, since

(p+-a) X ^P+|a^ =|{pxA +

A

X p}

= —ihejc

.

curlA = —iriejc . J¥,
where ^ is the magnetic field, that

^cr, PH--A^ =^p-ffA^ 4-^(cr,^).

(25)

Also we have

'W
p -f- -A

c y\c
Vi£ + ‘

;*!*)

-(^a,_A-A- + AeP-pA,j

_ i^e/ 1 aA
, ,

\
r- (

“ Yr + gradAq
j Cv

C V
' c dt

where £ is the electric field. Thus (24) become,?

{(T + ^^o)-(p+fA) -m2c2_^(o-, £)l^4 0.

This equation differs from (23) through having two extra termsm the operator. The electron according to the present theory ismore closely analogous to a classical system with the Hamiltonian

(T+f^<>)"-(p+jA.y m^c^-
/i6 , > Jtp— {ar,M) — ip^~{a, £).

If we neglect relativity corrections, so that we can put W = mc^+ W
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and count as small, this Hamiltonian reduces, after division

throughout by 2m, to

- -eA, -f p —]— A.
c 2mc 2mc

We can now see that the two extra terms may be considered approxi-

mately as due to the electron possessing an additional potential

energy of amount

which may he interpreted as arising from the electroTi having a magnetic

moment —hel2mc.<T and an electric moment —ip-^hel2mc . <t. This

magnetic moment is in agreement with the assumptions of § 43 and

is what is required by experiment. The electric moment, on the other

hand, is a pure imaginary quantity and thus cannot he considered

as having a physical meaning. The Hamiltonian of our original wave

equation (8) is real, and the imaginary term has appeared only on

account of our having performed a rather artificial operation to get

a Hamiltonian that can he compared with the classical one.

The spin angular momentum does not give rise to any potential

energy and therefore does not appear in the result of the preceding

calculation. Tlie sirn])lest way of showing the existence of the spin

angular moinentnin is to take tlie case of the motion of an electron

in a central field of force and determine the angular momentum
integrals. We therefore take A = 0 and a function of r only, so

that the wave equation (8) becomes

(j/F—H)0 = O,

where H = ~-eA^^{r)—c p^{cr, p)—/>3 mc^. (26)

This H is the Hamiltonian to be used in the equations of motion.

If we take the a;-componeiit of orbital angular momentum,

= yPz—^P in
change, with the help of corn-

mutability relations proved in §§ 44 and 45,

itirh^, == H—Hm,^

= • cp^{7yi,j.{a, p) (cr, p)???/^}

= — cpi((r,m^p—pmj
= —ihcp^{ayP^—a^Py).

K k3595
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Thus =^ 0 and the orbital angular momentum is not a constant

of the motion. We have further

= — cpi{o-^((r, p)— (cr, p)ct^}

= — cpi{o-a;Cr— o-CT^, p)

= —2icp-^{(y^py~ay'p^

with the help of equations (42) of § 43. Hence

= 0
,

so that the vector m+ J^cr is a constant of the motion. This result

one can interpret by saying the electron has a spin angular momentum
^har, which must be added to the orbital angular momentum m
before one gets a constant of the motion.

§ 77. Transition to Polar Variables
Tor the further study of the motion of an electron in a central field

of force, it is convenient to make a transformation to polar co-

ordinates, as was done in § 45 in the non-relativity case. We can

introduce r and p^. as before, but instead of k, the magnitude of the

orbital angular momentum m, which is no longer a constant of the

motion, we must now use the magnitude of the total angular

momentum M = m+l^^cr. If j is this magnitude expressed in units

of h, we shall have

_ Ml+Ml+Ml-^lh^. (27)

The eigenvalues of are integral multiples of h, those of are

and hence those of must be half-odd integral multiples of

h. It follows from the general result of § 30 that the eigenvalues

of j must be integers greater than zero.

If in formula (25) we take B = C == m, we get

(cr, m)2 = (o',m x m)

= (o-, m)

= (m-f pcr)2_2/i(o-, m)—p2.

Hence {(cr, m)-l-^P =
Thus (cr, is a quantity whose square is ^^^d we could,
consistently with equation (27), definep as ((r,m)d-^^ instead of as
the positive square root of This would not be convenient,
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however, since we wantJ to be a constant of the motion and. (cr,

is not constant. We have, in fact, from applications of (25),

(cr, m)(ar, p) = i(cr,m X p)

and (cr, p)(cr, m) — i(cr, pxm),

so that

(cr,m)(cr, p)+(o-, p)(cr,m) = i

== i . 2irip^ = — 2n{<r, p),

or {(cr, m)+^}(<r, p)+ (o', p){(o’5 i^)-f

Thus (cr, m)+^ anticommutes with one of the terms in the expression

(26) for H, namely the term —cpi(cr, p), and commutes with the other

two. It follows that iw.)“f"^^} commutes with all the three terms

in.H and is a constant of the motion. But the square of P3 {(o-, m)+j^4

is also M^q- \Ye can therefore take

jh = p^{{<r, m)+fi}, (28)

which gives us a convenient rational definition for J which is con-

sistent with (27) and makes J a constant of the motion. The eigen-

values of this j are all positive and negative integers, excluding zero.

By a further application of (25), we get

(cr, x)(cr, p) = (X, p)-l-i(cr, m)
== rpr+ipsjfi', (29)

with the help of (28) and also of equation (13) of Chapter VIII. We
introduce the observable e defiined by

re = Pi{cr,-K.). (30)

Since r commutes with and with (or, x), it must commute with e.

We thus have
rV = [p^(cr, x)12 = (cr, x)^ = = r^,

or = 1.

Since there is symmetry between x and p so far as angular momentum

is concerned, pi(cr, x), like Pi(cr, p), must commute with M and J.

Hence e commutes with M and j/. Further, e must commute with p,^,

since we have

(cr, x)(x, p)-(x, p)(cr, x) = (cr, x(x, p)— (x, p)x) == m(a, x).

which gives re(rp^-i-iJi)— (rpr-j-zM)r€ = Wire

or r6(p^r+ 2Wi)— (rp^+ij^)r€ = Wire^

which reduces to ep^—p^e — 0.

Kk23595
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From (29) and (30) we obtain

repi(ar, p) =
Pi(cr, P) = €p^-\-iepJhlr.

Hjc= — ejc . Aq— epj.— iep^jTiJr—p^mc.

This gives our Hamiltonian expressed in terms of polar variablc^H .

'

should be noticed that e and p^ commute with all the other varinl * It

"

occurring in H and anticommute with one another. This means t |

^

we can take a representation in which e and p^ are repres(‘ii f

respectively by the matrices

C !) G -0
M

(.4 *

and in which r, say, is diagonal, and the waTe function (r
\

)

wil 1 1 1 «

»

have two components, (r|)„ and (rl)^ say, referring to the two i t

and columns of the matrices.

§ 78. The Fine -Structure of the Energy-Levels of Hydroget*
We shall now take the case of the hydrogen atom, for which Aq «r

*

and work out its energy-levels, given by the eigenvalues H' of # ^

The equation {B.'—H)ip = 0 which defines these eigenvalues,

written in terms of representatives in the representation ci1 C. * 1 1
^

above with e and pg represented by the matrices ,(31), gives f l»

equations

(^ + ^)
(»•

I )i--7 {»• 1)6 + me {»
I ),.
= 0

(v + ^ I-
^'1

I

~
I

If we put
h _

jc

these equations reduce to

n __

mc—H'le
~~ ““ t .4 J

(4+9<''>--(S+9w>-» I,,,

where a = e^/hc, which is a small number. We shall solve these et| «
,

tions by a similar method to that used for equation (20) in § 4«L

Put
{r\)b = e~ric^g,
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introducing two new functions, / and g, of r, where

Equations (33) become

+ f) ^ (i^ “ J “ rV
=

We now try for a solution in which / and g are in the form of power
series,

S=Xs g == c;r«, (36)

in which consecutive values of s differ by unity though these values

need not be integers. Substituting these expressions for / and g in

(35) and picking out coefficients of r®“^, we obtain

—<-i/a2+“c;-l-(5—i)Cs“C,„i/a = 0.

By multiplying the first of these equations by a and the second by
(Xg and adding, we can eliminate both and since from (34)

(x/ai == a2,la. This gives

c^\ci(x-{-G/2,{s—y)]-f’Cg — ^'(*’“hj )]
—

a relation which shows the connexion between the primed and un-
primed c’s.

The boundary condition at r — 0 requires that the series (36) shall

terminate on the side of small s. If is the minimum value of 6' for

which and c' do not both vanish, we obtain from (37), by putting
s = Sq and c^^-i — = 0,

which give

Since the boundary condition requires that the minimum value of 5

shall be greater than zero, we must take

6*y =-- OL^.

To investigate the convergence of the series (36) we shall determine
the ratio for large s. Equation (38) and the second of equa-
tions (37) give approximately, when s is large,

Cg ^2 “
= Cg_i/a-f-c;_i/a2-

J53

(34)

(35)

and
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Hence %l%-i = 2/<x5.

The series (36) will therefore converge like

or This result is similar to that obtained in § 46 and allows us

to infer, as before, that all values of H' are permissible for which a

is pure imaginary, i.e. for which, from (34), H' > mc^, but of those

values of H' for which a is real, only those are permissible for which

the series (36) terminate on the side of large s.

If the series (36) terminate with the terms Cg and c', so that

Cg+i — c'+i = 0, we obtain from (37) with s-j-l substituted for s

These two equations are equivalent on account of (34). When com-

bined with (38), they give

a-y\a(x-\-a2,{s—
^J^)]
= a [0-2'^

—

which reduces to
2aja2S = a(a2

—

or
s

a \«i “2/

H'
(X — -—OC,

ch

with the help of (32). Squaring and using (34), we obtain

H'
Hence

^ + 2!V*.
mc^ \ )

The 5 here, which specifies the last term in the series, must be greater

than 5o some integer not less than zero. Calling this integer n,

we have
5 == 7^q_ — OL^

and thus

This formula gives the discrete energy-levels of the hydrogen
spectrum and was first obtained by Sommerfeld working with Bohr’s

orbit theory. There are two quantum numbers n and^‘ involved, but
owing to oL^ being very small the energy depends almost entirely on

H'
1 +

in 4- cx
2\2
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'^+1^1- Values of n and
|^‘l

that give the same n-\-\j\ give rise to a

set of energy-levels lying very closely to one another, and to the

energy-level given by the non-relativistic formula (27) of § 46 with
s = n-\r\j\.

For a general value of n, j can have any integral value except

zero. The value n = 0 is, however, exceptional as it makes equation

(38) vanish identically. A closer investigation shows that in this case

only negative values for J are allowed.^'

§ 79. Physical Meaning of the Negative-Energy Solutions

It has been mentioned before that the wave equation for the electron

admits of twice as many solutions as it ought to, half of them re-

ferring to states with negative values for the kinetic energy W e

A

q.

This difficulty was introduced as soon as we passed from equation (3)

to equation (4) and is inherent in any relativity theory. It occurs

also in classical relativity theory, but is not then serious since, owing
to the continuity in the variation of all classical dynamical variables,

if the kinetic energy W-^-cAq is initially positive (when it must be

greater than or equal to mc^), it cannot subsequently be negative

(when it would have to be less than or equal to — wc^). In the

quantum theory, however, discontinuous transitions may take place,

so that if the electron is initially in a state of positive kinetic energy
it may make a transition to a state of negative kinetic energy. It is

therefore no longer permissible simply to ignore the negative-energy

states, as one can do in the classical theory.

Let us examine the negative-energy solutions of the equation

I
+ “^ 0

^
+ (Pu ^ + “s (2^2 + " +

-|-

I

= 0 (39)

a little more closely. For this purpose it is convenient to use a repre-

sentation of the a’s ill which all the elements of the matrices represent-

ing oij., ocy, and oi^ are real and all those of the matrix representing

are pure imaginary. Such a representation may be obtained,

for instance, from that of § 74 by interchanging the expressions

for (Xy and in (7). With such a representation, if we write

* Seo W. Gordon, Zeits.J. Phys., vol. xlvdii, p. II (1928).
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—

i

for i in the operator of equation (39), we get, remembering (1)

and (2),

mcji/f = 0. (40)

Thus the conjugate complex of any wave function that is a solution

of (39) is a solution of (40). Further, if the solution of (39) belongs to

a negative value for W-\-eAQ, the conjugate complex solution of (40)

will belong to a positive value for W— cAq. But equation (40) is just

what one would get if one substituted —

e

for e in (39). It follows

that the conjugate complex of any solution of (39) belonging to a

negative value for W-{-eAQ is a solution, belonging to a positive value

for W— eAffy of the wave equation obtained from (39) by substitution

of — e for e, and therefore represents an electron of charge -1-e,

instead of — e, moving through the given electromagnetic field. Thus
the unwanted solutions of (39) are connected with the motion of an

electron with a charge +e. (It is not possible, of course, with an

arbitrary electromagnetic field, to separate the solutions of (39)

definitely into those referring to positive and those referring to

negative values for W-^-eA^, as such a separation would imply that

transitions from one kind to the other do not occur. The preceding

discussion is therefore only a rough one, applying to the case when
such a separation is approximately possible.)

In this way we are led to infer that the negative-energy solutions

of (39) refer to the motion of protons or hydrogen nuclei, although

there remains the difficulty of the great difference in the masses.

We cannot, however, simply assert that the negative-energy solutions

represent protons, as this would make the dynamical relations all

wrong. For instance, it is certainly not true that a proton has a

negative kinetic energy. We must therefore establish the protons on
a somewhat different footing. We assume that nearly all the negative-

energy states are occwpied, with one electron in each state in accordance
with the exclusion principle of Pauli. An unoccupied negative-energy
state will now appear as something with a positive energy, since to

make it disappear, i.e. to fill it up, we should have to add to it an
electron with negative energy. We assume that these unoccupied
negative-energy states are the protons.

4- a. p^-\- -A
G ) oc.m
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These assumptions require there to be a distribution of electrons

of infinite density everywhere in the world. A perfect vacuum is a

region where all the states of positive energy are unoccupied and

all those of negative energy are occupied. In a perfect vacuum
Maxwell’s equation

div S — 0

must, of course, be valid. This means that the infinite distribution

of negative-energy electrons does not contribute to the electric field.

Only departures from the distribution in a vacuum will contribute

to the electric density p in Maxwell’s equation

div S— — 4Trp.

Thus there will be a contribution —

e

for each occupied state of

positive energy and a contribution -\-e for each unoccupied state

of negative energy.

The exclusion principle will operate to prevent a positive-energy

electron ordinarily from making transitions to states of negative

energy. It will still be possible, however, for such an electron to

drop into an unoccupied state of negative energy. In this case we
should have an electron and proton disappearing simultaneously,

their energy being emitted in the form of radiation. Such processes

probably actually occur in nature.

The present theory is very symmetrical l>etween the electrons

and protons. The symmetry is not mathematically ])erfect, as may
easily be verified, when one takes interaction bt'twt^en tlie elections

into account. This cause, howcvver, hardly appears to l)e sulHcient,

according to |)resent ideas, to account for the very considei'iible

observed differences between electrons and protons, in particular' their

different masses. Possibly the solution of this difficulty will Ire found

in a better understanding of the nature of interaction.
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