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PREFACE

THE present book is intended, as far as pos-

sible, to give an exact insight into the

theory of Relativity to those readers who,

from a general scientific and philosophical point

of view, are interested in the theory, but who are

not conversant with the mathematical apparatus

'

of theoretical physics. The work presimies a

standard of education corresponding to that of a

university matriculation examination, and, de-

spite the shortness of the book, a fair amount

of patience and force of will on the part of the

reader. The author has spared himself no pains

in his endeavour to present the main ideas in the

simplest and most intelligible form, and on the

' The mathematical fimdaments of the special theory of rela-

tivity are to be found in the original papers of H. A. Lorentz, A.

Einstein, H. Minkowski' published under the title Das RelativiUUs-

prinzip (The Principle of Relativity) in B. G, Teubner's collection

of monographs Fortschritte der mathemaiischen Wissenschaften (Ad-

vances in the Mathematical Sciences), also in M. Lane's exhaustive

book Das RdativiUttsprinzip— published by Friedr. Vieweg & Son,

Braunschweig. The general theory of relativity, together with the

necessary parts of the theory of invariants, is dealt with in the

author's book Die Grundlagen der allgemeinen RelativiUltstheorie

(The Foundations of the General Theory of Relativity)— Joh.

Ambr. Barth, 1916; this book assumes some familiarity with the

special theory of relativity.

V



vi RELATIVITY

whole, in the sequence and connection in which

they actually originated. In the interest of

clearness, it appeared to me inevitable that I

should repeat myself frequently, without paying

the sHghtest attention to the elegance of the

presentation. I adhered scrupulously to the

precept of that brilliant theoretical physicist,

L. Boltzmann, according to whom matters of

elegance ought to be left to the tailor and to the

cobbler. I make no pretence of having with-

held from the reader diffictdties which are in-

herent to the subject. On the other hand, I have

purposely treated the empirical physical founda-

tions of the theory in a "step-motherly" fashion,

so that readers imfamiliar with physics may not

feel like the wanderer who was imable to see the

forest for trees. May the book bring some one

a few happy hours of suggestive thought!

A. EINSTEIN
December, igi6

NOTE TO THE THIRD EDITION

IN the present year (1918) an excellent and

detailed manual on the general theory of

relativity, written by H. Weyl, was pub-

Ushed by the firm Julius Springer (Berlin). This

book, entitled Raum— Zeit— Materie (Space—
Time— Matter), may be warmly recommended
to mathematicians and physicists.



BIOGRAPHICAL NOTE

ALBERT EINSTEIN is the son of German-

Jewish parents. He was bom in 1879 ^
the town of Uhn, Wiirtemberg, Germany.

His schooldays were spent in Munich, where he

attended the Gymnasium until his sijrteenth year.

After leaving school at Munich, he accompanied his

parents to MUan, whence he proceeded to Switzer-

land six months later to continue his studies.

From 1896 to 1900 Albert Einstein studied

mathematics and physics at the Technical High

School in Zurich, as he intended becoming a

secondary school (Gymnasium) teacher. For

some time afterwards he was a private tutor,

and having meanwhile become naturalised, he

obtained a post as engineer in the Swiss Patent

Office in 1902, which position he occupied tiU 1909.

The main ideas involved in the most important

of Einstein's theories date back to this period.

Amongst these may be mentioned: The Special

Theory of Relativity, Inertia of Energy, Theory of

the Brownian Movement, and the Quantum-Law

of the Emission and Absorption of Light (1905).

These were followed some years later by the
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Theory of the Specific Heat of Solid Bodies, and the

fundamental idea of the General Theory ofRelativity.

During the interval 1909 to 191 1 he occupied

the post of Professor Extraordinarius at the

University of Zurich, afterwards being appointed

to the University of Prague, Bohemia, where he

remained as Professor Ordinarius until 1912.

In the latter year Professor Einstein accepted a

similar chair at the Polytechnikum, Zurich, and

continued his activities there until 1914, when

he received a call to the Prussian Academy of

Science, Berlin, as successor to Van't Hoff.

Professor Einstein is able to devote himself

freely to his studies at the Berlin Academy, and

it was here that he succeeded in completing his

work on the General Theory of Relativity (1915-

17). Professor Einstein also lectures on various

special branches of physics at the University of

Berlin, and, in addition, he is Director of the

Institute for Physical Research of the Kaiser

Wilhelm Gesellschaft.

f Professor Einstein has been twice married.

His first wife, whom he married at Berne in 1903,

was a fellow-student from Serbia. There were

two sons of this marriage, both of whom are liv-

ing in Zurich, the elder being sixteen years of age.

Recently Professor Einstein married a widowed
cousin, with whom he is now living in Berlin.

R. W. L.



TRANSLATOR'S NOTE

IN presenting this translation to the English-

reading public, it is hardly necessary for me
to enlarge on the Author's prefatory remarks,

except to draw attention to those additions to the

book which do not appear in the original.

At my request. Professor Einstein kindly sup-

plied me with a portrait of himself, by one of

Germany's most celebrated artists. Appendix III,

on "The Experimental Confirmation of the Gen-

eral Theory of Relativity," has been written

specially for this translation. Apart from these

valuable additions to the book, I have included

a biographical note on the Author, and, at the

end of the book, an Index and a hst of Enghsh

references to the subject. This list, which is

more suggestive than exhaustive, is intended as

a guide to those readers who wish to pursue the

subject farther.

I desire to tender my best thanks to my col-

leagues Professor S. R. Mihier, D.Sc, and Mr.

W. E. Curtis, A.R.C.SC., F.R.A.S., also to my
friend Dr. Arthur Hohnes, A.R.C.Sc., F.G.S.,
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of the Imperial College, for their kindness in

reading through the manuscript, for helpful

criticism, and for numerous suggestions. I owe

an expression of thanks also to Messrs. Methuen

for their ready coimsel and advice, and for the

care they have bestowed on the work during the

course of its publication.

ROBERT W. LAWSON
The Physics Labosatory

The University of Sheffieid

June 12, 1920
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RELATIVITY
PART I

THE SPECIAL THEORY OF RELATIVITY

PHYSICAL MEANING OF GEOMETRICAL
PROPOSITIONS

IN
your schooldays most of you who read this

book made acquaintance with the noble build-

ing of Euclid's geometry, and you remember
— perhaps with more respect than love— the

magnificent structure, on the lofty staircase of

which you were chased about for imcounted

hours by conscientious teachers. By reason of

your past experience, you would certainly regard

every one with disdain who should pronounce

even the most out-of-the-way proposition of this

science to be untrue. But perhaps this feeling of

proud certainty would leave you immediately if

some one were to ask you: " What, then, do you

mean by the assertion that these propositions are

true? " Let us proceed to give this question a

little consideration.

Geometry sets out from certain conceptions such

as " plane," " point," and " straight line," with
1



8 SPECIAL THEORY OF RELATIVITY

which we are able to associate more or less defi-

nite ideas, and from certain simple propositions

(axioms) which, in virtue of these ideas, we are

inclined to accept as " true." Then, on the basis

of a logical process, the justification of which we
feel ourselves compelled to admit, all remaining

propositions are shown to foUow from those axioms,

i.e. they are proven. A proposition is then correct

(" true ") when it has been derived in the recog-

nised manner from the axioms. The question of

the " truth " of the individual geometrical propo-

sitions is thus reduced to one of the " truth " of

the axioms. Now it has long been known that

the last question is not only imanswerable by the

methods of geometry, but that it is in itself en-

tirely without meaning. We cannot ask whether

it is true that only one straight line goes through

two points. We can only say that Euclidean ge-

ometry deals with things called " straight lines,"

to e^ch of which is ascribed the property of being

imiquely determiaed by two points situated on it.

The concept " true " does not tally with the

assertions of pure geometry, because by the word
" true " we are eventually in the habit of desig-

nating always the correspondence with a " real

"

object; geometry, however, is not concerned with

the relation of the ideas involved in it to objects

of experience, but only with the logical connection

of these ideas among themselves.
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It is not difficult to imderstand why, in spite of

this, we feel constrained, to call the propositions of

geometry "true." Geometrical ideas correspond

to more or less exact objects in nature, and these

last are xmdoubtedly the exclusive cause of the

genesis of those ideas. Geometry ought to refrain

from such a course, in order to give to its structure

the largest possible logical unity. The practice,

for example, of seeing in a "distance" two marked

positions on a practically rigid body is something

which is lodged deeply in our habit of thought.

We are accustomed further to regard three points

as being situated on a straight line, if their ap-

parent positions can be made to coincide for ob-

servation with one eye, imder suitable choice of

our place of observation.

If, in pursuance of our habit of thought, we now
supplement the propositions of EucUdean geometry

by the single proposition that two points on a

practically rigid body always correspond to the

same distance (line-interval), independently of

any changes in position to which we may subject

the body, the propositions of EucUdean geometry

then resolve themselves into propositions on the

possible relative position of practically rigid bodies.*

' It follows that a natiiral object is associated also with a straight

line. Three points A, B and C on a rigid body thus lie in a straight

line when, the points A and C being given, B is chosen such that the

sum of the distances AB and BC is as short as possible. This in-

complete suggestion will suffice for our present purpose.
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Geometry which has been supplemented in

this way is then to be treated as a branch of

physics. We can now legitimately ask as to the

"truth" of geometrical propositions interpreted

in this way, since we are justified in asking whether

these propositions are satisfied for those real things

we have associated with the geometrical ideas. In

less exact terms we can express this by saying

that by the "truth" of a geometrical proposition

in this sense we understand its vaUdity for a con-

struction with ruler and compasses.

Of course the conviction of the "truth" of geo-

metrical propositions in this sense is founded

exclusively on rather incomplete experience. For

the present we shall assume the "truth" of the

geometrical propositions, then at a later stage

(in the general theory of relativity) we shall see

that this "truth" is limited, and we shall consider

the extent of its limitation.



n

THE SYSTEM OF CO-ORDINATES

ON the basis of the physical interpretation of

distance which has been indicated, we are

also in a position to estabUsh the distance

between two points on a rigid body by means of

measurements. For this p;rrpose we require a

"distance" (rod S) which is to be used once and

for aU, and which we employ as a standard measure.

If, now, A and B are two points on a rigid body,

we can construct the line joining them according

to the rules of geometry; then, starting from A,

we can mark off the distance S time after time

untU we reach B. The mmiber of these operations

required is the nimierical measure of the distance

AB. This is the basis of aU measurement of

length.!

Every description of the scene of an event or of

the position of an object in space is based on the

specification of the point on a rigid body (body of

reference) with which that event or object coin-

' Here we have assumed that there is nothing left over, i.e. that

the measurement gives a whole number. This difiSculty is got over

by the use of divided measuring-rods, the introduction of which

does not demand any fundamentally new method.

5



6 SPECIAL THEORY OF RELATIVITY

cides. This applies not only to scientific descrip-

tion, but also to everyday life. If I analyse the

place specification "Trafalgar Square, London," ^

I arrive at the following result. The earth is the

rigid body to. which the specification of place

refers; "Trafalgar Square, London" is a well-

defined point, to which a name has been assigned,

and with which the event coincides in space.*

This primitive method of place specification

deals only with places on the surface of rigid bodies,

and is dependent on the existence of points on

this surface which are distingiiishable from each

other. But we can free ourselves from both of

these limitations without altering the nature of

our specification of position. If, for instance, a

cloud is hovering over Trafalgar Square, then we

can determine its position relative to the svirface

of the earth by erecting a pole perpendicularly on

the Square, so that it reaches the cloud. The

length of the pole measured with the standard

measuriQg-rod, combined with the specification of

the position of the foot of the pole, supplies us

with a complete place specification. On the basis

' I have chosen this as being more familiar to the English reader

than the "Potsdamer Platr, Berlin," which is referred to in the

original. (R. W. L.)

' It is not necessary here to investigate further the significance

of the expression "coiacidence in space." This conception is suf-

ficiently obvious to ensure that differences of opinion are scarcely

likely to arise as to its applicability in practice.
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of this illustration, we are able to see the manner

in which a refinement of the conception of position

has been developed.

(a) We imagine the rigid body, to which the

place specification is referred, supplemented in

such a manner that the object whose position we

require is reached by the completed rigid body.

(6) In locating the position of the object, we
make use of a number (here the length of the pole

measured with the measuring-rod) instead of

designated points of reference.

(c) We speak of the height of the cloud even

when the pole which reaches the cloud has not

been erected. By means of optical observations

of the cloud from diEEerent positions on the

ground, and taking into accoimt the properties of

the propagation of hght, we determine the length

of the pole we should have required in order to

reach the cloud.

From this consideration we see that it will be

advantageous if, in the description of position, it

should be possible by means of numerical measures

to make ourselves independent of the existence of

marked positions (possessing names) on the rigid

body of reference. In the physics of measurement

this is attained by the application of the Cartesian

system of co-ordinates.

This consists of three plane surfaces perpendicu-

lar to each other and rigidly attached to a rigid
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body. Referred to a system of co-ordinates, the

scene of any event will be detennined (for the

main part) by the specification of the lengths of

the three perpendiculars or co-ordinates (x, y, z)

which can be dropped from the scene of the event

to those three plane surfaces. The lengths of

these three perpendiculars can be determined by

a series of manipulations with rigid measuring-

rods performed according to the rules and methods

laid down by Euclidean geometry.

In practice, the rigid surfaces which constitute

the system of co-ordinates are generally not

available; furthermore, the magnitudes of the co-

ordinates are not actually determined by con-

structions with rigid rods, but by indirect means.

If the results of physics and astronomy are to

maintain their clearness, the physical meaning of

specifications of position must always be sought

in accordance with the above considerations.^

We thus obtain the following result: Every

description of events in space involves the use of

a rigid body to which such events have to be

referred. The resulting relationship takes for

granted that the laws of EucHdean geometry hold

for "distances," the "distance" being represented

physically by means of the convention of two
marks on a rigid body.

^ A refinement and modification of these views does not become
necessary imtil we come to deal with the graeral theoty of relativity,

treated in the second part of this book.



m
SPACE AND TIME IN CLASSICAL MECHANICS

"'TT^HE purpose of mechanics is to describe how
I bodies change their position in space with

time." I should load my conscience with

grave sins against the sacred spirit of lucidity

were I to formulate the aims of mechanics in this

way, without serious reflection and detailed ex-

planations. Let us proceed to disclose these sins.

It is not clear what is to be imderstood here by

"position" and "space." I stand at the window

of a railway carriage which is travelling uniformly,

and drop a stone on the embankment, without

throwing it. Then, disregarding the influence of

the air resistance, I see the stone descend in a

straight line. A pedestrian who observes the mis-

deed from the footpath notices that the stone

falls to earth in a paraboUc curve. I now ask:

Do the "positions" traversed by the stone He "in

reahty" on a straight line or on a parabola?

Moreover, what is meant here by motion "in

space" ? From the considerations of the previous

section the answer is self-evident. In the first

place, we entirely shun the vague word "space,"
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of which, we must honestly acknowledge, we can-

not form the slightest conception, and we replace

it by "motion relative to a practically rigid body

of reference," The positions relative to the body

of reference (railway carriage or embankment)

have already been defined in detail in the preced-

ing section. If instead of "body of reference"

we insert "system of co-ordinates," which is a

useful idea for mathematical description, we are

in a position to say: The stone traverses a straight

line relative to a system of co-ordinates rigidly

attached to the carriage, but relative to a system

of co-ordinates rigidly attached to the ground

(embankment) it describes a parabola. With ihej

aid of this example it is clearly seen that there is

no such thing as an independently existing tra-

jectory (ht. "path-curve" 0> but only a trajectory

relative to a particular body of reference.

In order to have a complete description of the

motion, we must specify how the body alters its

position with time; i.e. for every point on the

trajectory it must be stated at what time the

body is situated there. These data must be

supplemented by such a definition of time that,

in virtue of this definition, these time-values can

be regarded essentially as magnitudes (results of

measurements) capable of observation. If we
take our stand on the groimd of classical me-

' That is, a curve along which the body moves.
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chanics, we can satisfy this requirement for our

illustration in the following manner. We imagine

two clocks of identical construction; the man at

the railway-carriage window is holding one of

them, and the man on the footpath the other.

Each of the observers determines the position on

his own reference-body occupied by the stone at

each tick of the clock he is holding in his hand.

In this connection we have not taken account of

the inaccuracy involved by the finiteness of the

velocity of propagation of light. With this and

with a second difficulty prevailing here we shall

have to deal in detail later.



IV

THE GALILEIAN SYSTEM OF
CO-ORDINATES

AS is well known, the fundamental law of the

mechanics of Galilei-Newton, which is

known as the law of inertia, can be stated

thus: A body removed sufficiently far from other

bodies continues in a state of rest or of imiform

motion in a straight line. This law not only says

something about the motion of the bodies, but it

also indicates the reference-bodies or systems of

co-ordinates, permissible m mechanics, which can

be used in mechanical description. The visible

fixed stars are bodies for which the law of inertia

certainly holds to a high degree of approximation.

Now if we use a system of co-ordinates which is

rigidly attached to the earth, then, relative to

this system, every fixed star describes a circle of

immense radius in the course of an astronomical

day, a result which is opposed to the statement of

the law of inertia. So that if we adhere to this law

we must refer these motions only to systems of co-

ordinates relative to which the fixed stars do not

move in a circle. A system of co-ordinates of

le
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which the state of motion is such that the law of

inertia holds relative to it is called a "Galileian

system of co-ordinates." The laws of the me-

chanics of Galilei-Newton can be regarded as valid

only for a Galileian system of co-ordinates.



THE PRINCIPLE OF RELATIVITY (IN THE
RESTRICTED SENSE)

IN
order to attain the greatest possible clear-

ness, let us return to our example of the rail-

way carriage supposed to be travelling

uniformly. We call its motion a uniform transla-

tion ("uniform" because it is of constant velocity

and direction, "translation" because although

the carriage changes its position relative to the

embankment yet it does not rotate in so doing).

Let us imagine a raven flying through the air in

such a manner that its motion, as observed from

the embankment, is vmiform and in a straight line.

If we were to observe the flying raven from the

moving railway carriage, we should find that the

motion of the raven would be one of different veloc-

ity and direction, but that it would stiU be uni-

form and in a straight line. Expressed in an

abstract manner we may say: If a mass m is

moving uniformly in a straight line with respect

to a co-ordinate system K, then it will also be

moving vmiformly and in a straight Une relative

to a second co-ordinate system K', provided that
14
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the latter is executing a uniform translatory

motion with respect to K. In accordance with the

discussion contained in the preceding section, it

follows that:

If X is a GaUleian co-ordinate system, then

every other co-ordinate system K' is a Galileian

one, when, in relation to K, it is in a condition of

uniform motion of translation. Relative to K'

the mechanical laws of Galilei-Newton hold good

exactly as they do with respect to K.

We advance a step farther in our generalisation

when we express the tenet thus: If, relative to

K, K' is a uniformly moving co-ordinate system

devoid of rotation, then natural phenomena nm
their course with respect to K' according to

exactly the same general laws as with respect to

K. This statement is called the principle of

relativity (in the restricted sense).

As long as one was convinced that all natural

phenomena were capable of representation with

the help of classical mechanics, there was no need

to doubt the vaUdity of this principle of relativity.

But in view of the more recent development of

electrodynamics and optics it became more and

more evident that classical mechanics affords an

insufficient foundation for the physical description

of all natural phenomena. At this juncture the

question of the vaHdity of the principle of relativity

became ripe for discussion, and it did not appear
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impossible that the answer to this question might

be in the negative.

Nevertheless, there are two general facts which

at the outset speak very much in favour of the

validity of the principle of relativity. Even

though classical mechanics does not supply us

with a sufficiently broad basis for the theoretical

presentation of all physical phenomena, still we

must grant it a considerable measure of "truth,"

since it supplies us with the actual motions of the

heavenly bodies with a delicacy of detail little

short of wonderful. The principle of relativity

must therefore apply with great accuracy in the

domain of mechanics. But that a principle of

such broad generahty should hold with such

exactness in one domain of phenomena, and yet

should be invaUd for another, is a priori not very

probable.

We now proceed to the second argument, to

which, moreover, we shall return later. If the

principle of relativity (in the restricted sense)

does not hold, then the GalUeian co-ordinate

systems K, K', K", etc., which are moving imi-

formly relative to each other, wiU not be equivalent

for the description of natural phenomena. In

this case we should be constrained to beUeve that

natural laws are capable of being formulated in a

particularly simple manner, and of course only on

condition that, from amongst all possible Galileian
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co-ordinate systems, we should have chosen one

(Ko) of a particular state of motion as our body of

reference. We should then be justified (because

of its merits for the description of natural phe-

nomena) in calling this system "absolutely at

rest," and all other Galileian systems K "in mo-
tion." If, for instance, our embankment were the

system Ko, then our railway carriage would be a

system K, relative to which less simple laws would

hold than with respect to Ko. This duninished

simpUcity would be due to the fact that the carriage

K would be in motion {i.e. "really") with respect

to Ko. In the general laws of nature which have

been formulated with reference to K, the magni-

tude and direction of the velocity of the carriage

would necessarily play a part. We should expect,

for instance, that the note emitted by an organ-

pipe placed with its axis parallel to the direction of

travel would be different from that emitted if the

axis of the pipe were placed perpendicular to this

direction. Now in virtue of its motion in an orbit

round the sun, oiu* earth is comparable with a rail-

way carriage travelling with a velocity of about

30 kilometres per second. If the principle of

relativity were not valid we should therefore expect

that the direction of motion of the earth at any

moment would enter into the laws of nature, and

also that physical systems in their behaviour

would be dependent on the orientation in space
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with respect to the earth. For owing to the altera-

tion in direction of the velocity of revolution ofthe

earth in the course of a year, the earth cannot be

at rest relative to the hypothetical system ^o
throughout the whole year. However, the most

careful observations have never revealed such

anisotropic properties in terrestrial physical space,

i.e. a physical non-equivalence of different direc-

tions. This is a very powerful argument in favour

of the principle of relativity.



VI

THE THEOREM OF THE ADDITION OF
VELOCITIES EMPLOYED EST CLASSI-

CAL MECHANICS

LET us suppose our old friend the railway

carriage to be travelling along the rails with

a constant velocity v, and that a man
traverses the length of the carriage in the direction

of travel with a velocity w. How quickly, or, in

other words, with what velocity W does the man
advance relative to the embankment during the

process? The only possible answer seems to

result from the following consideration: If the

man were to stand still for a second, he would

advance relative to the embankment through a

distance v equal niunericaUy to the velocity of the

carriage. As a consequence of his walking, how-

ever, he traverses an additional distance w relative

to the carriage, and hence also relative to the

embankment, in this second, the distance w being

numerically equal to the velocity with which he is

walking. Thus in total he covers the distance

W= V +w relative to the embankment in the

second considered. We shall see later that this

result, which expresses the theorem of the addi-

19
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tion of velocities employed in classical mechamcs,

cannot be maintained; in other words, the law

that we have just written down does not hold in

reality. For the time being, however, we shall

assume its correctness.



vn

THE APPARENT INCOMPATIBILITY OF THE
LAW OF PROPAGATION OF LIGHT WITH
THE PRINCIPLE OF RELATIVITY

THERE ia hardly a simpler law in physics

than that according to which light is propa-

gated in empty space^ Every child at school

knows, or behevesTTe'knows, that this propagation

takes place in straight lines with a velocity

c = 300,000 km. /sec. At all events we know with

great exactness that this velocity is the same for

all colours, because if this were not the case, the

minimum of emission would not be observed

simultaneously for different colours during the

eclipse of a fixed star by its dark neighbour. By
means of similar considerations based on observa-

tions of double stars, the Dutch astronomer De
Sitter was also able to show that the velocity of

propagation of light cannot depend on the velocity

of motion of the body emitting the light. The

assumption that this velocity of propagation is

dependent on the direction "in space" is in itself

improbable.

In short, let us assimie that the simple law of

the constancy of the velocity of light c (in vacuxmi)
21
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is justifiably believed by the duld at school. Who
would imagine that this simple law has pltmged

the conscientiously thoughtful physicist into the

greatest intellectual difficulties? Let us consider

how these difliculties arise.

Of course we must refer the process of the

propagation of hght (and indeed every other

process) to a rigid reference-body (co-ordinate

system). As such a system let us again choose

our embankment. We shall imagine the air above

it to have been removed. If a ray of light be sent

along the embankment, we see from the above

that the tip of the ray wiU be transmitted with

the velocity c relative to the embankment. Now
let us suppose that oiu: railway carriage is again

travelling along the railway lines with the velocity

V, and that its direction is the same as that of the

ray of Kght, but its velocity of course much less.

Let us inquire about the velocity of propagation

of the ray of light relative to the carriage. It is

obvious that we can here apply the consideration

of the previous section, since the ray of Ught plays

the part of the man walking along relatively to

the carriage. The velocity W of the man relative

to the embankment is here replaced by the velocity

of Kght relative to the embankment, w is the

required velocity of Hght with respect to the

carriage, and we have

w = c — p.
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The velocity of propagation of a ray of light

relative to the carriage thus comes out smaller

than c.

But this result comes into conflict with the

principle of relativity set forth ia Section V. For,

like every other general law of nature, the law of

the transmission of light in vacuo must, according

to the principle of relativity, be the same for the

railway carriage as reference-body as when the

rails are the body of reference. But, from our

above consideration, this would appear to be im-

possible. If every ray of Ught is propagated rela-

tive to the embankment with the velocity c, then

for this reason it would appear that another law

of propagation of light must necessarily hold with

respect to the carriage— a result contradictory to

the principle of relativity.

In view of this dilemma there appears to be

nothing else for it than to abandon either the

principle of relativity or the simple law of the

propagation of light in vacuo. Those of you who
have carefully followed the preceding discussion

are almost sure to expect that we shoxild retain

the principle of relativity, which appeals so con-

vincingly to the intellect because it is so natural

and simple. The law of the propagation of light

in vacuo would then have to be replaced by a

more complicated law conformable to the principle

of relativity. The development of theoretical
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physics shows, however, that we cannot pursue

this course. The epoch-making theoretical in-

vestigations of H. A. Lorentz on the electrody-

namical and optical phenomena connected with

moving bodies show that experience in this domain

leads conclusively to a theory of electromagnetic

phenomena, of which the law of the constancy of

the velocity of Ught in vacuo is a necessary conse-

quence. Prominent theoretical physicists were

therefore .more inclined to reject the principle of

relativity, in spite of the fact that no empirical

data had been found which were contradictory to

this principle..

At'thls Juncture the theory of relativity entered

the arena. As a result of an analysis of the physical

conceptions of time and space, it became evident

that in reality there is not the least incompatibility

between the principle of relativity and the law of

propagation of light, and that by systematically

holding fast to both these laws a logically rigid

theory could be arrived at. This theory has been

called the special theory of relativity to distinguish

it from the extended theory, with which we shall

deal later. In the following pages we shall present

the fundamental ideas of the special theory of

relativity.



vm
ON THE roEA OF TIME IN PHYSICS

LIGHTNING has struck the rails on our rail-

way embankment at two places A and B
far distant from each other. I make the

additional assertion that these two Hghtning

flashes occurred simultaneously. If I ask you

whether there is sense in this statement, you

will answer my question with a decided "Yes."

But if I now approach you with the request to

explain to me the sense of the statement more

precisely, you find after some consideration that

the answer to this question is not so easy as it

appears at first sight.

After some time perhaps the following answer

would occur to you: "The significance of the

statement is clear in itself and needs no fiurther

explanation; of course it would require some con-

sideration if I were to be commissioned to deter-

mine by observations whether in the actual case

the two events took place simultaneously or not."

I cannot be satisfied with this answer for the follow-

ing reason. Supposing that as a result of ingenious

considerations an able meteorologist were to dis-

ss
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cover that the lightning must always strike the

places A and B simultaneously, then we should be

faced with the task of testing whether or not this

theoretical result is in accordance with the reality.

We encoimter the same difficulty with aU physical

statements in which the conception "simultane-

ous" plays a part. The concept does not exist

for the physicist until he has the possibility of

discovering whether or not it is fulfilled in an

actual case. We thus require a definition of

simultaneity such that this definition supplies us

with the method by means of which, in the present

case, he can decide by experiment whether or not

both the Ughtning strokes ocoirred simultane-

ously. As long as this requirement is not satisfied,

I allow myself to be deceived as a physicist (and

of course the same appUes if I am not a physicist),

when I imagine that I am able to attach a meaning

to the statement of simultaneity. (I would ask

the reader not to proceed farther until he is fully

convinced on this point.)

After thinking the matter over for some time

you then offer the following suggestion with which

to test simultaneity. By measuring along the

rails, the connecting line AB should be measured

up and an observer placed at the mid-point M
of the distance AB. This observer should be

supplied with an arrangement (e.g. two mirrors

inclined at 90°) which allows him visually to ob-
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serve both places A and B at the same time. If

the observer perceives the two flashes of lightning

at the same time, then they are simultaneous.

I am very pleased with this suggestion, but for

all that I cannot regard the matter as qxiite settled,

because I feel constrained to raise the following

objection: "Your definition would certainly be

right, if I only knew that the light by means of

which the observer at M. perceives the Hghtning

flashes travels along the lengthA > M with the

same velocity as along the length B > M.
But an examination of this supposition would only

be possible if we already had at our disposal the

means of measuring time. It would thus appear

as though we were moving here in a logical circle."

After further consideration you cast a somewhat

disdainful glance at me— and rightly so— and

you declare: "I maintain my previous definition

nevertheless, because in reahty it assumes ab-

solutely nothing about light. There is only one

demand to be made of the definition of simulta-

neity, namely, that in every real case it must

supply us with an empirical decision as to whether

or not the conception that has to be defined is

fulfilled. That my definition satisfies this demand

is indisputable. That light requires the same

time to traverse the path A—->M as for the

path B > M is in reality neither a supposition

nor a hypothesis about the physical nature of light,
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but a stipulation which I can make of my own

freewill in order to arrive at a definition of

simultaneity."

It is clear that this definition can be used to

give an exact meaning not only to two events, but

to as many events as we care to choose, au'' in-

dependently of the positions of the scenes of the

events with respect to the body of reference'

(here the railway embankment). We are thus led

also to a definition of "time" in physics. For

this purpose we suppose that clocks of identical

construction are placed at the points A, B and C
of the railway line (co-ordinate system), and that

they are set in such a manner that the positions

of their pointers are simultaneously (in the above

sense) the same. Under these conditions we

imderstand by the "time" of an event the reading

(position of the hands) of that one of these clocks

which is in the immediate vicinity (in space) of

the event. In this manner a time-value is asso-

ciated with every event which is essentially capable

of observation.

This stipulation contains a further physical

1 We suppose further that, when three events A, B and C take

place in different places in such a manner that, if A is simultaneous

with B, and B is simultaneous with C (simultaneous in the sense of

the above definition), then the criterion for the simultaneity of the

pair of events ^, C is also satisfied. This assumption is a physical

hypothesis about the law of propagation of light; it must certainly

be fulfilled if we are to maintain the law of the constancy of the

velocity of light in vacuo.
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hypothesis, the validity of which will hardly be

doubted without empirical evidence to the con-

trary. It has been assumed that all these clocks

go at the same rate if they are of identical construc-

tion. Stated more exactly: When two clocks

arranged at rest in different places of a reference-

body are set in such a manner that a particular

position of the pointers of the one clock is simtd-

taneous (in the above sense) with the same position

of the pointers of the other clock, then identical

"settings" are always simultaneous (in the sense

of the above definition).



IX

THE RELATIVITY OF SIMULTANEITY

UP to now oixr considerations have been re-

ferred to a particular body of reference,

which we have styled a "railway embank-

ment." We suppose a very long train travelling

along the rails with the constant velocity v and

in the direction indicated in Fig. i. People

travelling in this train will with advantage use

the train as a rigid reference-body (co-ordinate

system); they regard all events in reference to

r M'-—

»

y > Train'^
I ! -4

^

M B EmbajUcment

Fig. I.

the train. Then every event which takes place

along the line also takes place at a particular

point of the train. Also the definition of simul-

taneity can be given relative to the train in exactly

the same way as with respect to the embankment.

As a natural consequence, however, the following

question arises:

Are two events {e.g. the two strokes of lightning

A and B) which are simultaneous with reference to

30
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the railway embankment also simultaneous relatively

to the train? We shall show directly that the

answer must be in the negative.

When we say that the lightning strokes A and B
are simultaneous with respect to the embankment,

we mean: the rays of light emitted at the places

A and B, where the Ughtning occurs, meet each

other at the mid-point M of the length A > B
of the embankment. But the events A and B
also correspond to positions A and B on the

traia. Let M' be the mid-point of the distance

A > B on the travelling train. Just when the

flashes ^ of lightning occur, this point M' naturally

coincides with the point M, but it moves towards

the right in the diagram with the velocity v of

the train. If an observer sitting in the position

M' in the train did not possess this velocity, then

he would remain permanently at M, and the light

rays emitted by the flashes of lightning A and B
would reach him simultaneously, i.e. they would

meet just where he is situated. Now in reality

(considered with reference to the railway embank-

ment) he is hastening towards the beam of light

coming from B, whilst he is riding on ahead of the

beam of light coming from A. Hence the observer

will see the beam of light emitted from B earlier

than he will see that emitted from A. Observers

who take the railway train as their reference-body

* As judged from the embankment.
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must therefore come to the conclusion that the

lightning flash B took place earUer than the light-

ning flash A. We thus arrive at the important

result:

Events which are simultaneous with reference

to the embankment are not simultaneous with

respect to the train, and vice versa (relativity of

simultaneity). Every reference-body (co-ordinate

system) has its own particular time; unless we

are told the reference-body to which the statement

of time refers, there is no meaning in a statement

of the time of an event.

Now before the advent of the theory of relativity

it had always tacitly been assumed in physics

that the statement of time had an absolute

significance, i.e. that it is independent of the state

of motion of the body of reference. But we have

just seen that this assumption is incompatible

with the most natural definition of simultaneity;

if we discard this assumption, then the conflict

between the law of the propagation of light in

vacuo and the principle of relativity (developed

in Section VII) disappears.

We were led to that conflict by the considera-

tions of Section VI, which are now no longer

tenable. In that section we concluded that the

man in the carriage, who traverses the distance

w per second relative to the carriage, traverses the

same distance also with respect to the embank-
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ment in each second of time. But, according to

the foregoing considerations, the time required by

a particular occurrence with respect to the carriage

must not be considered equal to the duration of

the same occurrence as judged from the embank-

ment (as reference-body). Hence it cannot be

contended that the man in walking travels the

distance w relative to the railway Hne in a time

which is equal to one second as judged from the

embankment.

Moreover, the considerations of Section VI are

based on yet a second assmnption, which, in the

light of a strict consideration, appears to be

arbitrary, although it was always tacitly made

even before the introduction of the theory of

relativity.



ON THE RELATIVITY OF THE CONCEPTION
OF DISTANCE

LET us consider two particular points on the

train* travelling along the embankment

with the velocity v, and inquire as to their

distance apart. We already know that it is neces-

sary to have a body of reference for the measure-

ment of a distance, with respect to which body

the distance can be measured up. It is the simplest

plan to use the train itself as the reference-body

(co-ordinate system). An observer in the train

measures the interval by marking oflE his measur-

ing-rod in a straight line {e.g. along the floor of

the carriage) as many times as is necessary to

take him from the one marked point to the other.

Then the nmnber which tells us how often the

rod has to be laid down is the required distance.

It is a different matter when the distance has

to be judged from the railway line. Here the

following method suggests itself. If we call A'

and B' the two points on the train whose distance

apart is required, then both of these points are

* e.g. the middle of the first and of the hundredth carriage.

Si
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moving with the velocity v along the embankment.

In the first place we require to determine the

points A and B of the embankment which are

just being passed by the two points A' and B'

at a particular time t— judged from the embank-

ment. These points A and B of the embankment

can be determined by applying the definition of

time given ia Section VIII. The distance between

these points A and B is then measured by repeated

application of the measuring-rod along the em-

bankment.

A priori it is by no means certain that this last

measurement wUl supply us with the same result

as the first. Thus the length of the train as

measured from the embankment may be different

from that obtained by measuring in the train

itself. This circumstance leads us to a second

objection which must be raised against the ap-

parently obvious consideration of Section VI.

Namely, if the man in the carriage covers the

distance w ia a unit of time— measured from the

train,— then this distance— as measured from the

embankment— is not necessarily also equal to w.



XI

THE LORENTZ TRANSFORMATION

THE results of the last three sections show

that the apparent incompatibility of the

law of propagation of light with the principle

of relativity (Section VII) has been derived by

means of a consideration which borrowed two

unjustifiable hypotheses from classical mechanics;

these are as foUows:

(i) The time-interval (time) between two events

is independent of the condition of motion

of the body of reference.

(2) The space-iaterval (distance) between two

points of a rigid body is independent of

the condition of motion of the body of

reference.

If we drop these hypotheses, then the dilemma

of Section VII disappears, because the theorem of

the addition of velocities derived in Section VI

becomes invalid. The possibiHty presents itself

that the law of the propagation of light in vacuo

may be compatible with the principle of relativity,

and the question arises: How have we to modify

the considerations of Section VI in order to remove
36
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the apparent disagreement between these two

fundamental results of experience? This question

leads to a general one. In the discussion of

Section VI we have to do with places and times

relative both to the train and to the embankment.

How are we to find the place and time of an event

in relation to the train, when we know the place

and time of the event with respect to the railway

embankment? Is there a thinkable answer to this

question of such a nature that the law of transmis-

sion of hght in vacuo does not contradict the

principle of relativity? In other words: Can we

conceive of a relation between place and time of

the individual events relative to both reference-

bodies, such that every ray of Ught possesses the

velocity of transmission c relative to the embank-

ment and relative to the train? This question

leads to a quite definite positive answer, and to a

perfectly definite transformation law for the space-

time magnitudes of an event when changing over

from one body of reference to another.

Before we deal with this, we shall introduce the

following incidental consideration. Up to the

present we have only considered events taking

place along the embankment, which had mathe-

matically to assume the fimction of a straight line.

In the manner indicated in Section II we can

imagine this reference-body supplemented later-

ally and in a vertical direction by means of a
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framework of rods, so that an event which takes

place anywhere can be localised with reference

to this framework. Similarly, we can imagine

the train travelling with the velocity v to be

continued across the whole of space, so that every

event, no matter how far ofE it may be, could also

be localised with respect to the second framework.

Without committing any fundamental error, we
can disregard the fact that in reality these frame-

works would continually interfere with each other,

owing to the impenetrability of solid bodies. In

every such framework we imagine three surfaces

perpendicular to each other marked out, and

designated as "co-ordinate planes" ("co-ordinate

S3^tem"). A co-ordinate system K then corre-

sponds to the embankment, and a co-ordinate

system K' to the train. An event, wherever it

may have taken place, would be fixed in space

with respect to K by the three perpendiculars

X, y, z on the co-ordinate planes, and with regard

to time by a time-value t. Relative to K', the

same event would be fixed in respect of space and

time by corresponding values x', y', z', /', which

of course are not identical with x, y, z, t. It has

already been set forth in detail how these magni-

tudes are to be regarded as results of physical

measurements.

Obviously our problem can be exactly formu-

lated in the following manner. What are the
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*:v

values a/, /, z', ^ of an event with respect to K',

when the magnitudes x, y, z, t, of the same event

with respect to K are given? The relations must

be so chosen that the law

of the transmission of

light in vacuo is satisfied

for one and the same ray

of light (and of course for

every ray) with respect to

K and K'. For the rela-

tive orientation in space

of the co-ordinate systems indicated in the diagram

(Fig. 2), this problem is solved by means of the

eqiiations:

, X — vt

Fig. 2.

nT t

= z

f^ I?

>R
This system of equations is known as the "Lorentz

transformation." ^

K in place of the law of transmission of light we
had taken as our basis the tacit assimiptions of

the older mechanics as to the absolute character

* A simple derivation of the Lorentz transfoimation is given in

Appendir I.
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of times and lengths, then instead of the above we

should have obtained the following equations:

x' =x — vt

y = y

n = t.

This system of equations is often termed the

" Galilei transformation." The Galilei transforma-

tion can be obtauied from the Lorentz trans-

formation by substituting an infinitely large value

for the velocity of Ught c in the latter trans-

formation.

Aided by the following illustration, we can

readily see that, ia accordance with the Lorentz

transformation, the law of the transmission of

hght in vacuo is satisfied both for the reference-

body K and for the reference-body K'. A light-

signal is sent along the positive a>-axis, and this

Ught-stimulus advances in accordance with the

equation
X = ct,

i.e. with the velocity c. According to the equations

of the Lorentz transformation, this simple rela-

tion between x and t involves a relation between

x' and /'. In point of fact, if we substitute for

X the value ct in the first and fourth equations of

the Lorentz transformation, we obtain:

^, (c-v)t
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]t

from which, by division, the expression

x' = ct'

immediately follows. If referred to the system K',

the propagation of light takes place according to

this equation. We thus see that the velocity of

transmission relative to the reference-body K' is

also equal to c. The same result is obtained for

rays of light advancing in any other direction

whatsoever. Of course this is not surprising,

since the equations of the Lorentz transformation

were derived conformably to this point of view.



xn
THE BEHAVIOUR OF MEASURING-RODS "AND

CLOCKS IN MOTION '
'

I
PLACE a metre-rod iB the aj'-axis of K' in

such a manner that one end (the beginning)

coincides with the point x' = o, whilst the

other end (the end of th rod) coincides with the

point x' = I. What is the length of the metre-

rod relatively to the system K? In order to learn

this, we need only ask where the beginning of the

rod and the end of the rod lie with respect to K
at a particvdar time t of the system K. By means

of the first equation of the Lorentz transformation

the values of these two points at the time t =o
can be shown to be

I ^
*(begiiming of rod) " °"\ ^ ^s

I ^
*(endofrod) "^'V^"^'

I «*'
the distance between the points being -J i

But the metre-rod is moving with the velocity v

relative to K. It therefore follows that the length

of a rigid metre-rod moving in the direction of its

length with a velocity » is V i - d*/c* of a metre.

The rigid rod is thus shorter when in motion than
42
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when at rest, and the more quickly it is moving,

the shorter is the rod. For the velocity v = c

we should have V i - ^V c* = o, and for still

greater velocities the square-root becomes im-

aginary. From this we conclude that in the

theory of relativity the velocity c plays the part

of a limiting velocity, which can neither be reached

nor exceeded by any real body.

Of course this feature of the velocity c as a

Umiting -velocity also clearly follows from the

equations of the Lorentz transformation, for these

become meaningless if we choose values of v

greater than c.

If, on the contrary, we had considered a metre-

rod at rest in the x-axis with respect to K, then we
should have found that the length of the rod as

judged from K' would have been ^ x-t?- 1 c^; this

is quite in accordance with the principle of rela-

tivity which forms the basis of our considerations.

A priori it is quite clear that we must be able to

learn something about the physical behaviour of

measuring-rods and clocks from the equations of

transformation, for the magnitudes x, y, z, t, are

nothing more nor less than the results of measure-

ments obtainable by means of measuring-rods and

clocks. If we had based our considerations on the

Galilei transformation we should not have ob-

tained a contraction of the rod as a consequence

of its motion.
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Let us now consider a seconds-clock which is

permanently situated at the origin (*' = o) of K'.

if = o and tf = i are two successive ticks of this

clock. The first and fourth equations of the

Lorentz transformation give for these two ticks:

/ = o

and

t =

4^-

As judged from K, the dock is moving with

the velocity v; as judged from this reference-body,

the time which elapses between two strokes of the

clock is not one second, but . seconds, i.e.

a somewhat larger time. As a consequence of its

motion the clock goes more slowly than when at

rest. Here also the velocity c plays the part of

an unattainable limiting velocity.



xm
THEOREM OF THE ADDITION OF VELOCITIES.

THE EXPERIMENT OF FIZEAU

NOW in practice we can move clocks and

measuring-rods only with velocities that

are small compared with the velocity of

light; hence we shall hardly be able to compare

the results of the previous section directly with

the reality. But, on the other hand, these results

must strike you as being very singular, and for

that reason I shall now draw another conclusion

from the theory, one which can easUy be derived

from the foregoing'cdnsiderations,' andwhich has

been most elegantly confirmed by experiments

In Section VI we derived the theorem of the

addition of velocities in one direction in the form

which also results from the hypotheses of classical

mechanics. This theorem can also be deduced

readily from the Galilei transformation (Section

XI). In place of the man walking inside the

carriage, we introduce a point moving relatively

to the co-ordinate system K' in accordance with

the equation
x' = wt'.

By means of the first and fourth equations of the

45
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Galilei transfonnation we can express a;' and i

in terms of x and /, and we then obtain

a; = (z) + 110)1.

This equation expresses nothing else than the law

of motion of the point with reference to the system

K (of the man with reference to the embankment).

We denote this velocity by the symbol W., and we
then obtain, as in Section VI,

W = -o-\-w (A).

But we can carry out this consideration just as

well on the basis of the theory of relativity. In

the equation

x' = wt'

we must then express x' and f in terms of x and t,

making use of the first and fourth equations of the

Lorentz transformation. Instead of the equation

(A) we then obtain the equation

W = '-±^... (B),

^+^

which corresponds to the theorem of addition for

velocities in one direction according to the theory

of relativity. The question now arises as to which

of these two theorems is the better in accord with

experience. On this point we are enHghtened by
a most important experiment which the brilliant

physicist Fizeau performed more than half a

century ago, and which has been repeated since
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then by some of the best experimental physicists,

so that there can be no doubt about its result.

TTie experiment is concerned with the following

question. Light travels ia a motionless hquid

with a particular velocity w. How quickly does

it travel in the direction of the arrow in the tube T
(see the accompanying diagram, Fig. 3) when the

liquid above mentioned is flowiug through the

tube with a velocity 11?

In accordance with the principle of relativity

we shall certainly have to take for granted that

the propagation of Hght always takes place with

the same velocity w with respect to the liquid,

whether the latter is in motion with reference to

other bodies or not. The velocity of Hght relative

to the liquid and the velocity of the latter relative

to the tube are thus known, and we require the

velocity of light relative to the tube, s

It is clear that we have the problem of Section

VI again before us. The tube plays the part of

/"

Fig. 3

the railway embankment or of the co-ordinate

system K, the liquid plays the part of the carriage

or of the co-ordinate system K', and finally, the

light plays the part of the man walking along the

carriage, or of the moving pomt in the present
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section. If we denote the velocity of the light

relative to the tube by W, then this is given by
the equation (A) or (B), according as the Galilei

transformation or the Lorentz transformation

corresponds to the facts. Experiment ^ decides in

favour of equation (B) derived from the theory of

relativity, and the agreement is, indeed, very

exact. According to recent and most excellent

measurements by Zeeman, the influence of the

velocity of flow v on the propagation of Hght

is represented by formula (B) to within one

per cent.

Nevertheless we must now draw attention to

the fact that a theory of this phenomenon was

given by H. A. Lorentz long before the statement

of the theory of relativity. This theory was of a

pmrely electrodynamical nature, and was obtained

by the use of particular hypotheses as to the

electromagnetic structure of matter. This circmn-

stance, however, does not in the least diminish

the conclusiveness of the experiment as a crucial

test in favour of the theory of relativity, for the

1 Fizeau found W = w + v{'i »), where n= - is the index

of refraction of the liquid. On the other hand, owing to the small-

ness of
-J-

as compared with i, we can replace (B) in the first place

byW = (w + ») ( I - -3 j, or to the same order of approximation by

ai + 1) ( I—A, which agrees with Fizeau's result.
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electrodynamics of Maxwell-Lorentz, on which the

original theory was based, in no way opposes the

theory of relativity. Rather has the latter been

developed from electrodynamics as an astomidingly

simple combination and generahsation of the

hj^otheses, formerly independent of each other,

on which electrodynamics was built.



XIV

THE HEURISTIC VALUE OF THE THEORY OF
RELATIVITY

OUR train of thought in the foregoing pages

can be epitomised in the following manner.

Experience has led to the conviction that,

on the one hand, the principle of relativity holds

true, and that on the other hand the velocity of

transmission of Ught in vacuo has to be considered

equal to a constant c. By uniting these two postu-

lates we obtained the law of transformation for

the rectangular co-ordinates x, y, z and the time

t of the events which constitute the processes of

nature. In this connection we did not obtain

the Galilei transformation, but, differing from

classical mechanics, the Lorentz transformation.

The law of transmission of light, the acceptance

of which is justified by our actual knowledge,

played an important part in this process of thought.

Once in possession of the Lorentz transformation,

however, we can combine this with the principle

of relativity, and simi up the theory thus:

Every general law of nature must be so con-

stituted that it is transformed into a law of

exactly the same form when, instead of the space-

£0



HEURISTIC VALUE OF RELATIVITY 51

time variables x, y, 2, / of the original co-ordinate

system K, we introduce new space-time variables

x', y, 2', t' of a co-ordinate system K'. In this

connection the relation between the ordinary and

the accented magnitudes is given by the Lorentz

transformation. Or, in brief: General laws of

nature are co-variant with respect to Lorentz

transformations.

This is a definite mathematical condition that

the theory of relativity demands of a natural law,

and in virtue of this, the theory becomes a valuable

heuristic aid in the search for general, laws of

nature. If a general law of nature were to be fovmd

which did not satisfy this condition, then at least

one of the two fundamental assumptions of the

theory would have been disproved. Let us now

examine what general results the latter theory

has hitherto evinced.



XV

GENERAL RESULTS OF THE THEORY

IT
is clear from our previous considerations that

the (special) theory of relativity has grown

out of electrod3Tiamics and optics. In these

fields it has not appreciably altered the predictions

of theory, but it has considerably simplified the

theoretical structure, i.e. the derivation of laws,

and— what is incomparably more important— it

has considerably reduced the number of inde-

pendent hj^otheses forming the basis of theory.

The special theory of relativity has rendered the

Maxwell-Lorentz theory so plausible, that the

latter would have been generally accepted by

physicists even if experiment had decided less

unequivocally in its favour.

Classical mechanics required to be modified

before it could come into line with the demands

of the special theory of relativity. For the main

part, however, this modification affects only the

laws for rapid motions, in which the velocities of

matter v are not very small as compared with the

velocity of light. We have experience of such

rapid motions only in the case of electrons and
St



GENERAL RESULTS OF THEORY 53

ions; for other motions the variations from the

laws of classical mechanics are too small to make
themselves evident in practice. We shall not

consider the motion of stars mitil we come to

speak of the general theory of relativity. In

accordance with the theory of relativity the

kinetic energy of a material point of mass m is no

longer given by the well-known expression

2

but by the expression

tru?

0>

This expression approaches infinity as the velocity

V approaches the velocity of Ught c. The velocity

must therefore always remain less than c, however

great may be the energies used to produce the

acceleration. If we develop the expression for

the kinetic energy in the form of a series, we
obtain

fnc'+m- + fm'-^+ ....
2 o C

When - is small compared with unity, the third
c

of these terms is always small in comparison with

the second, which last is alone considered in classi-

cal mechanics. The first term mc^ does not contain

the velocity, and requires no consideration if we
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are only dealing with the question as to how the

energy of a point-mass depends on the velocity.

We shaU speak of its essential significance later.

The most important result of a general character

to which the special theory of relativity has led is

concerned with the conception of mass. Before

the advent of relativity, physics recognised two

conservation laws of fundamental importance,

namely, the law of^the conservation of energy

and the law of the conservation of mass; these

two fimdamental laws appeared to be quite in-

dependent of each other. By means of the

theory of relativity they have been imited into one

law. We shall now briefly consider how this

imification came about, and what meaning is to

be attached to it. |

The principle of relativity'requires that the law

of the conservation of energy should hold not

only with reference to a co-ordinate system K,

but also with respect to every co-ordinate system

K' which is in a state of uniform motion of transla-

tion relative to K, or, briefly, relative to every

"Galileian" system of co-ordinates. In contrast

to classical mechanics, the Lorentz transformation

is the deciding factor in the transition from one

such system to another.

By means of comparatively simple considera-

tions we are led to draw the following conclusion

from these premises, in conjunction with the
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fundamental equations of the electrod3Tiamics of

Maxwell: A body moving with the velocity v,

which absorbs^ an amount of energy £o in the

form of radiation without suffering an alteration

in velocity in the process, has, as a consequence,

its energy increased by an amount

Eo

v/-?

In consideration of the expression given above

for the kinetic energy of the body, the required

energy of the body comes out to be

(r^
v^

V
I - -

c

Thus the body has the same energy as a body

of mass (>» + ^ ) moving with the velocity v.

Hence we can say: If a body takes up an amount

of energy £o, then its inertial mass increases by an

amount -^ ; the inertial mass of a body is not a

constant, but varies according to the change in

the energy of the body. The inertial mass of a

system of bodies can even be regarded as a measure

* £o is the energy taken up, as judged from a co-ordinate system

moving with the body.
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of its energy. The law of the conservation of the

mass of a system becomes identical with the law

of the conservation of energy, and is only valid

provided that the system neither takes up nor

sends out energy. Writing the expression for the

energy ia the form

v/
rf

^-^

we see that the term mc^, which has hitherto

attracted our attention, is nothing else than the

energy possessed by the body ^ before it absorbed

the energy Eg.

A direct comparison of this relation with e^eri-

ment is not possible at the present time, owing to

the fact that the changes in energy Eo to which we
can subject a system are not large enough to make

themselves perceptible as a change in the inertial

-En
mass of the system. -^ is too small in comparison

with the mass m, which was present before the

alteration of the energy. It is owing to this circimi-

stance that classical mechanics was able to es-

tablish successfully the conservation of mass as a

law of iadqpendent vaHdity.

Let me add a final remark of a fundamental

nature. The success of the Faraday-Maxwell

^ As judged from a co-ordinate system moving with the body.
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interpretation of electromagnetic action at a dis-

tance resulted in physicists becoming convinced

that there are no such things as instantaneous

actions at a distance (not involving an inter-

mediary mediiun) of the type of Newton's law of

gravitation. According to the theory of relativity,

action at a distance with the velocity of light

always takes the place of instantaneous action at

a distance or of action at a distance with an in-

finite velocity of transmission. This is connected

with the fact that the velocity c plays a funda-

mental r61e in this theory. In Part II we shaU see

in what way this result becomes modified in the

general theory of relativity.



XVI

EXPERIENCE AND THE SPECIAL THEORY
OF RELATIVITY

TO what extent is the special theory of rela-

tivity supported by experience? This ques-

tion is not easily answered for the reason

already mentioned in connection with the funda-

mental experiment of Fizeau. The special theory

of relativity has crystallised out from the Maxwell-

Lorentz theory of electromagnetic phenomena.

Thus all facts of experience which support the

electromagnetic theory also support the theory of

relativity. As being of particular importance, I

mention here the fact that the theory of relativity

enables us to predict the effects produced on the

light reaching us from the fixed stars. These

results are obtained in an exceedingly simple

manner, and the effects indicated, which are due

to the relative motion of the earth with reference

to those fixed stars, are found to be in accord

with experience. We refer to the yearly move-

ment of the apparent position of the fixed stars

resulting from the motion of the earth round the

sun (aberration), and to the influence of the radial

SB
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components of the relative motions of the fixed

stars with respect to the earth on the colour of

the light reaching us from them. The latter effect

manifests itself in a slight displacement of the

spectral lines of the Hght transmitted to us from

a fixed star, as compared with the position of the

same spectral lines when they are produced by a

terrestrial source of light (Doppler principle).

The experimental arguments in favour of the

MaxweU-Lorentz theory, which are at the same

time argxmients in favour of the theory of rela-

tivity, are too numerous to be set forth here. In

reahty they limit the theoretical possibilities to

such an extent, that no other theory than that of

Maxwell and Lorentz has been able to hold its

own when tested by experience.

But there are two classes of experimental facts

hitherto obtained which can be represented in the

Maxwell-Lorentz theory only by the introduction

of an aiixUiary hypothesis, which in itself— i.e.

without making use of the theory of relativity—
appears extraneous.

It is known that cathode rays and the so-called

/3-rays emitted by radioactive substances consist

of negatively electrified particles (electrons) of

very small inertia and large velocity. By examin-

ing the deflection of these rays imder the influence

of electric and magnetic fields, we can study the

law of motion of these particles very exactly.
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In the theoretical treatment of these electrons,

we are faced with the diflSculty that electro-

dynamic theory of itself is imable to give an ac-

coimt of their nature. For since electrical masses

of one sign repel each other, the negative electrical

masses constituting the electron would necessarily

be scattered under the influence of their mutual

repulsions, unless there are forces of another kind

operating between them, the nature of which has

hitherto remained obscure to us.^ If we now
assimie that the relative distances between the

electrical masses constituting the electron remain

imchanged during the motion of the electron

(rigid connection in the sense of classical me-

chanics), we arrive at a law of motion of the

electron which does not agree with experience.

Guided by piurely formal points of view, H. A.

Lorentz was the first to introduce the hypothesis

that the particles constituting the electron ex-

perience a contraction in the direction of motion

in consequence of that motion, the amount of this

contraction being proportional to the expression

•*/i = -j- This hypothesis, which is not justifiable

by any electrodynamical facts, supplies us then

with that particidar law of motion which has been

confijmed with great precision in recent years.

^ The general theory of relativity renders it likely that the elec-

trical masses of an electron are held together by gravitational forces.
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The theory of relativity leads to the same law

of motion, without requiring any special hypothe-

sis whatsoever as to the structure and the be-

haviour of the electron. We arrived at a similar

conclusion in Section XIII in connection with the

experiment of Fizeau, the residt of which is fore-

told by the theory of relativity without the ne-

cessity of drawing on hypotheses as to the physical

nature of the liquid.

The second class of facts to which we have

alluded has reference to the question whether or

not the motion of the earth in space can be made
perceptible in terrestrial experiments. We have

already remarked in Section V that all attempts

of this nature led to a negative result. Before

the theory of relativity was put forward, it was

difficult to become reconciled to this negative

result, for reasons now to be discussed. The in-

herited prejudices about time and space did not

allow any doubt to arise as to the prime importance

of the Galilei transformation for changing over

from one body of reference to another. Now
assuming that the Maxwell-Lorentz equations

hold for a reference-body K, we then find that

they do not hold for a reference-body K' moving

imiformly with respect to K, if we assume that

the relations of the Galileian transformation

exist between the co-ordinates of K and K'. It

thus appears that of aU Galileian co-ordinate
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systems one (K) corresponding to a particular

state of motion is physically imique. This result

was interpreted physically by regarding X" as at

rest with respect to a hypothetical aether of space.

On the other hand, all co-ordinate systems K'

moving relatively to K were to be regarded as in

motion with respect to the aether. To this motion

of K' against the aether ("aether-drift" relative to

K') were assigned the more complicated laws

which were supposed to hold relative to K'.

Strictly speaking, such an aether-drift ought also

to be assumed relative to the earth, and for a

long time the efforts of physicists were devoted

to attempts to detect the existence of an aether-

drift at the earth's surface.

In one of iJie most notable of these attempts

Michelson devised a method which appears as

though it must be decisive. Imagine two mirrors

so arranged on a rigid body that the reflecting

surfaces face each other. A ray of light requires

a perfectly definite time T to pass from one mirror

to the other and back again, if the whole system

be at rest with respect to the aether. It is foimd

by calculation, however, that a slightly different

time r' is required for this process, if the body,

together with the mirrors, be moving relatively

to the aether. Andyet another point: it is shown

by calculation that for a given velocity v with

reference to the aether, this time T is different
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when the body is moving perpendicularly to the

planes of the mirrors from that resulting when

the motion is parallel to these planes. Although

the estimated difference between these two times

is exceedingly small, Michelson and Morley

performed an experiment involving interference

in which this difference shoiild have been clearly

detectable. But the experiment gave a negative

result— a fact very perplexing to physicists.

Lorentz and FitzGerald rescued the theory from

this difi&culty by assuming that the motion of

the body relative to the aether produces a contrac-

tion of the body in the direction of motion, the

amount of contraction being just sufl&cient to

compensate for the difference in time mentioned

above. Comparison with the discussion in Section

XII shows that also from the standpoint of the

theory of relativity this solution of the difficulty

was the right one. But on the basis of the theory

of relativity the method of interpretation is in-

comparably more satisfactory. According to this

theory there is no such thing as a "specially

favoured" (imique) co-ordinate system to occasion

the introduction of the aether-idea, and hence

there can be no aether-drift, nor any experiment

with which to demonstrate it. Here the contrac-

tion of moving bodies follows from the two hm-
damental principles of the theory without the

introduction of particular hypotheses; and as the
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prime factor involved in this contraction we find,

not the motion in itself, to which we cannot

attach any meaning, but the motion with respect

to the body of reference chosen in the particular

case in point. Thus for a co-ordinate system

moving with the earth the mirror system of

Michelson and Morley is not shortened, but it is

shortened for a co-ordinate system which is at

rest relatively to the sim.
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MINKOWSKI'S FOUR-DIMENSIONAL SPACE

THE non-mathematician is seized by a mys-

terious sKuddering when he hears of "four-

dimensional" things, by a feeUng not unlike

that awakened by thoughts of the occult. And
yet there is no more common-place statement than

that the world in which we Uve is a four-dimen-

sional space-time continuum.

Space is a three-dimensional continuum. By
this we mean that it is possible to 'describe the

position of a point (at rest) by means of three

numbers (co-ordinates) x, y, z, and that there is

an indefinite number of points in the neighbour-

hood of this one, the position of which can be

described by co-ordinates such as Xi, yi, Zi, which

may be as near as we choose to the respective

values of the co-ordinates x, y, z of the first point.

In virtue of the latter property we speak of a

"continuum," and owing to the fact that there

are three co-ordinates we speak of it as being

" three-dimensional."

' Similarly, the world of physical phenomena

which was briefly called "world" by Minkowski
65



66 SPECIAL THEORY OF RELATIVITY

is naturally four-dimensional in the space-time

sense. Fdr it is composed of individual events,

each of which is described by four numbers,

namely, three space co-ordinates x, y, z and a

time co-ordinate, the time-value /. The "world"

is in this sense also a continuum; for to every

event there are as many "neighbouring" events

(realised or at least thinkable) as we care to

choose, the co-ordinates Xi, ji, Zi, h of which differ

by an indefinitely small amount from those of the

event x, y, z, t originally considered. That we

have not been accustomed to regard the world

in this sense as a four-dimensional continuum is

due to the fact that in physics, before the advent

of the theory of relativity, time played a different

and more independent role, as compared with

the space co-ordinates. It is for this reason that

we have been in the habit of treating time as an

independent continuum. As a matter of fact,

according to classical mechanics, time is absolute,

i.e. it is independent of the position and the condi-

tion of motion of the system of co-ordinates. We
see this expressed in the last equation of the

GaUleian transformation {t' = t).

The four-dimensional mode of consideration of

the "world" is natural on the theory of relativity,

since according to this theory time is robbed of its

independence. This is shown by the fourth equa-

tion of the Lorentz transformation:
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Moreover, according to this equation the time

difference At' of two events with respect to K'

does not in general vanish, even when the time

difference At of the same events with reference to

K vanishes. Pure "space-distance" of two events

with respect to K results in "time-distance" of

the same events with respect to K'. But the

discovery of Minkowski, which was of importance

for the formal development of the theory of rela-

tivity, does not He here. It is to be found rather

in the fact of his recognition that the four-dimen-

sional space-time continuum of the theory of rela-

tivity, in its most essential formal properties,

shows a pronounced relationship to the three-

dimensional continuum of EucHdean geometrical

space.* In order to give due prominence to this

relationship, however, we must replace the usual

time co-ordinate t by an imaginary magnitude

V— I. ct proportional to it. Under these condi-

tions, the natural laws satisfying the demands of

the (special) theory of relativity assimie mathe-

matical forms, in which the tune co-ordinate plays

exactly the same r61e as the three space co-

ordinates. Formally, these four co-ordinates

' Cf. the somewhat more detailed discussion in Appendix n.
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correspond exactly to the three space co-ordinates

in Euclidean geometry. It must be clear even to

the non-mathematician that, as a consequence of

this purely formal addition to our knowledge, the

theory perforce gained clearness in no mean

measure.

These inadequate remarks can give the reader

only a vague notion of the important idea con-

tributed by Minkowski. Without it the general

theory of relativity, of which the fundamental ideas

are developed in the following pages, would perhaps

have got no farther than its long clothes. Min-

kowski's work is doubtless difficult of access to

anyone inexperienced in mathematics, but since

it is not necessary to have a very exact grasp of

this work in order to xmderstand the fundamental

ideas of either the special or the general theory of

relativity, I shaU at present leave it here, and

shall revert to it only towards the end of Part II.



PART II

THE GENERAL THEORY OF RELATIVITY

xvm

SPECIAL AND GENERAL PRINCIPLE OF
RELATIVITY

THE basal principle, which was the pivot of all

our previous considerations, was the special

principle of relativity, i.e. the principle of

the physical relativity of all uniform motion. Let

us once more analyse its meaning carefully.

It was at all times clear that, from the point of

view of the idea it conveys to us, every motion

must only be considered as a relative motion.

Returning to the illustration we have frequently

used of the embankment and the railway carriage,

we can express the fact of the motion here taking

place in the foUowiug two forms, both of which

are equally justifiable:

(a) The carriage is in motion relative to the

embankment.

(J) The embankment is in motion relative to

the carriage.

In (a) the embankment, in (6) the carriage,

serves as the body of reference in our statement
60
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of the motion taking place. If it is simply a

question of detecting or of describing the motion

involved, it is in principle immaterial to what

reference-body we refer the motion. As already

mentioned, this is self-evident, but it must not be

confused with the much more comprehensive state-

ment called "the principle of relativity," which we

have taken as the basis of our investigations.

The principle we have made use of not only

maintains that we may equally «?eU choose the

carriage or the embankment as our reference-body

for the description of any event (for this, too, is

self-evident). Our principle rather asserts what

follows: If we formulate the general laws of

nature as they are obtained from experience, by

making use of

(o) the embankment as reference-body,

(b) the railway carriage as reference-body,

then these general laws of nature (e.g. the laws of

mechanics or the law of the propagation of light

in vacuo) have exactly the same form in both cases.

This can also be expressed as follows: For the

physical description of naturaLprocesses^ nd^gi:.

6T^ the "reference-bodies K, K' is unique—(lit

—

"specially marked out") as compared with the

other. Unlike the first, this latter statement need

not of necessity hold a priori; it is not contained

in the conceptions of "motion" and "reference-
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body" and derivable from them; only experience

can decide as to its correctness or incorrectness.

Up to the present, however, we have by no

means maintained the equivalence of all bodies

of reference K in connection with the formulation

of natural laws. Our course was more on the

following lines. In the first place, we started out

from the assumption that there exists a reference-

body K, whose condition of motion is such that

the GaUleian law holds with respect to it: A
particle left to itself and sufl&ciently far removed

from all other particles moves uniformly in a

straight line. With reference to K (Galileian

reference-body) the laws of nature were to be as

simple as possible. But in addition to K, all

bodies of reference K' should be given preference

in this sense, and they should be exactly equiva-

lent to K for the formulation of natural laws,

provided that they are in a state of uniform

rectilinear and nonrotary motion with respect to K;
all these bodies of reference are to be regarded

as Galileian reference-bodies. The vaUdity of

the principle of relativity was assumed only for

these reference-bodies, but not for others {e.g.

those possessing motion of a different kind). In

this sense we speak of the special principle of

relativity, or special theory of relativity.

In contrast to this we wish to imderstand by

the "general principle of relativity" the following
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statement: All bodies of reference K, K\ etc.,

are equivalent for the description of natural

phenomena (formulation of the general laws of

nature), whatever may be their state of motion.

But before proceeding farther, it ought to be

pointed out that this formulation must be re-

placed later by a more abstract one, for reasons

which wiU become evident at a later stage.

Siace the introduction of the special principle

of relatiAdty has been justified, every intellect

which strives after generalisation must feel the

temptation to venture the step towards the general

principle of relativity. But a simple and ap-

parently quite reliable consideration seems to

suggest that, for the present at any rate, there is

Uttle hope of success iu such an attempt. Let

us imagine ourselves transferred to our old friend

the railway carriage, which is travelling at a

uniform rate. As long as it is moving imiformly,

the occupant of the carriage is not sensible of its

motion, and it is for this reason that he can with-

out reluctance interpret the facts of the case as

indicating that the carriage is at rest, but the

embankment m motion. Moreover, according

to the special principle of relativity, this inter-

pretation is quite justified also from a physical

point of view.

If the motion of the carriage is now changed

into a non-uniform motion, as for instance by a
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powerful application of the brakes, then the oc-

cupant of the carriage experiences a correspond-

ingly powerful jerk forwards. The retarded mo-

tion is manifested in the mechanical behaviour

of bodies relative to the person in the railway

carriage. The mechanical behaviour is different

from that of the case previously considered, and

for this reason it would appear to be impossible

that the same mechanical laws hold relatively to

the non-imiformly moving carriage, as hold with

reference to the carriage when at rest or in uni-

form motion. At all events it is clear that the

GaMleian law does not hold with respect to the

non-imiformly moving carriage. Because of this,

we feel compelled at the present jimcture to grant

a kind of absolute physical reality to non-uniform

motion, in opposition to the general principle of

relativity. But in what follows we shall soon

see that this conclusion cannot be maintained.



xrx

THE GRAVITATIONAL FIELD

"TF we pick up a stone and then let it go, why

J^ does it faJl to the ground?" The usual

answer to this question is: "Because it is

attracted by the earth." Modem physics formu-

lates the answer rather differently for the follow-

ing reason. As a result of the more careful study

of electromagnetic phenomena, we have come to

regard action at a distance as a process impossible

without the intervention of some intermediary

medium. If, for instance, a magnet attracts a

piece of iron, we cannot be content to regard this

as meaning that the magnet acts directly on the

iron through the intermediate empty space, but

we are constrained to imagine— after the manner

of Faraday— that the magnet always calls

into being something physically real in the space

aroimd it, that something being what we call a

"magnetic field." In its turn this magnetic field

operates on the piece of iron, so that the latter

strives to move towards the magnet. We shall

not discuss here the justification for this incidental

conception, which is indeed a somewhat arbi-
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trary one. We shall only mention that with its

aid electromagnetic phenomena can be theoret-

ically represented much more satisfactorily than

without it, and this appHes particularly to the

transmission of electromagnetic waves. The

effects of gravitation also are regarded in an

analogous manner.

The action of the earth on the stone takes

place indirectly. The earth produces in its sur-

roundings a gravitational field, which acts on the

stone and produces its motion of fall. As we

know from experience, the intensity of the action

on a body diminishes according to a quite definite

law, as we proceed farther and farther away from

the earth. From our point of view this means:

The law governing the properties of the gravita-

tional field in space must be a perfectly definite

one, in order correctly to represent the diminution

of gravitational action with the distance from

operative bodies. It is something like this: The
body (e.g. the earth) produces a field in its imme-

diate neighbourhood directly; the intensity and

direction of the field at points farther removed

from the body are thence determined by the law

which governs the properties in space of the

gravitational fields themselves.

In contrast to electric and magnetic fields, the

gravitational field exhibits a most remarkable

property, which is of fimdamental importance
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for what follows. Bodies which are moving under

the sole influence of a gravitational field receive

an acceleration, which does not in the least depend

either on the material or on the physical state of the

body. For instance, a piece of lead and a piece

of wood fall in exactly the same manner ia a

gravitational field {in vacuo), when they start off

from rest or with the same initial velocity. This

law, which holds most accurately, can be expressed

in a different form in the Hght of the following

consideration.

According to Newton's law of motion, we have

(Force) = (inertial mass) X (acceleration),

where the "mertial mass" is a characteristic

constant of the accelerated body. If now gravi-

tation is the cause of the acceleration, we then

have

(Force) = (gravitational mass) X (intensity of the

gravitational field),

where the "gravitational mass" is likewise a

characteristic constant for the body. From these

two relations follows:

<««^»«'«) - 'T^sriT' X <-'-"' "'
'^

gravitational field).

If now, as we find from experience, the accelera-

tion is to be independent of the nature and the

condition of the body and always the same for a
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given gravitational field, then the ratio of the

gravitational to the inertial mass must likewise

be the same for all bodies. By a suitable choice

of units we can thus make this ratio equal to

unity. We then have the following law: The

gravitational mass of a body is equal to its inertial

mass.

It is true that this important law had hitherto

been recorded in mechanics, but it had not been

interpreted. A satisfactory interpretation can be

obtained only if we recognise the following fact:

The same quality of a body manifests itself ac-

cording to circumstances as "inertia" or as

"weight" (lit. "heaviness"). In the following

section we shall show to what extent this is

actually the case, and how this question is con-

nected with the general postiilate of relativity.



XX

THE EQUALITY OF INERTIAL AND GRAVITA-
TIONAL MASS AS AN ARGUMENT FOR THE
GENERAL POSTULATE OF RELATIVITY

WE imagine a large portion of empty space,

so far removed from stars and other

appreciable masses that we have before

us approximately the conditions required by the

fundamental law of Galilei. It is then possible

to choose a Galileian reference-body for this part

of space (world), relative to which points at rest

remain at rest and points in motion continue

permanently in imiform rectilinear motion. As

reference-body let us imagine a spacious chest

resembling a room with an observer inside who

is equipped with apparatus. Gravitation nat-

urally does not exist for this observer. He must

fasten himself with strings to the floor, otherwise

the sHghtest impact against the floor will cause

him to rise slowly towards the ceiling of the

room.

To the middle of the lid of the chest is fixed

externally a hook with rope attached, and now a

"being" (what kind of a being is immaterial to
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us) begins pulling at this with a constant force.

The chest together with the observer then b^in
to move "upwards" with a urdfomaly accelerated

motion. In course of time their velocity will

reach unheard-of values— provided that we are

viewing all this from another reference-body

which is not being pulled with a rope.

But how does the man in the chest regard the

process? The acceleration of the chest will be

transmitted to him by the reaction of the floor

of the chest. He must therefore take up this

pressure by means of his legs i£ he does not wish

to be laid out fuU length on the floor. He is then

standing in the chest in exactly the same way as

anyone stands in a room of a house on our earth.

If he release a body which he previously had in

his hand, the acceleration of the chest wUl no

longer be transmitted to this body, and for this

reason the body will approach the floor of the

chest with an accelerated relative motion. The
observer wiU further convince himself that the

acceleration of the body towards the floor of the chest

is always of the same magnittide, whatever kind of

body he may happen to use for the experiment.

Rel3dng on his knowledge of the gravitational

field (as it was discussed in the preceding section),

the man in the chest will thus come to the con-

clusion that he and the chest are in a gravitational

field which is constant with regard to time. Of
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course he will be puzzled for a moment as to why
the chest does not fall m this gravitational field.

Just then, however, he discovers the hook in the

middle of the Ud of the chest and the rope which

is attached to it, and he consequently comes to

the conclusion that the chest is suspended at rest

in the gravitational field.

Ought we to smUe at the man and say that he

errs in his conclusion? I do not beheve we ought

to if we wish to remain consistent; we must rather

admit that his mode of grasping the situation

violates neither reason nor known mechanical

laws. Even though it is being accelerated with

respect to the "Galileian space" first considered,

we can nevertheless regard the chest as being at

rest. We have thus good grounds for extending

the principle of rdativity to include bodies of

reference which are accelerated with respect to

each other, and as a result we have gained a

powerful argimaent for a generahsed postulate

of relativity.

We must note carefully that the possiblility of

this mode of interpretation rests on the fundamen-

tal property of the gravitational field of giving

all bodies the same acceleration, or, what comes

to the same thing, on the law of the equaUty of

inertial and gravitational mass. If this natural

law did not exist, the man in the accelerated chest

would not be able to interpret the behaviour of
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the bodies around him on the supposition of a

gravitational field, and he would not be justified

on the grounds of experience in supposing his

reference-body to be "at rest."

Suppose that the man in the chest fixes a rope

to the inner side of the Hd, and that he attaches

a body to the free end of the rope. The result of

this wiU be to stretch the rope so that it will

hang "vertically" downwards. If we ask for an

opinion of the cause of tension in the rope, the

man in the chest will say: "The suspended body

experiences a downward force in the gravitational

field, and this is neutrahsed by the tension of the

rope; what determines the magnitude of the ten-

sion of the rope is the gravitational mass of the

suspended body." On the other hand, an ob-

server who is poised freely in space will interpret

the condition of things thus: "The rope must

perforce take part in the accelerated motion of

the chest, and it transmits this motion to the body

attached to it. The tension of the rope is just

large enough to effect the acceleration of the body.

That which determines the magnitude of the

tension of the rope is the inertial mass of the

body." Guided by this example, we see that our

extension of the principle of relativity implies

the necessity of the law of the equality of inertial

and gravitational mass. Thus we have obtained

a physical interpretation of this law.
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From our consideration of the accelerated chest

we see that a general theory of relativity must

yield important riesults on the laws of gravitation.

In point of fact, the systematic piu-suit of the

general idea of relativity has supplied the laws

satisfied by the gravitational field. Before pro-

ceeding farther, however, I must warn the reader

against a misconception suggested by tijese con-

siderations. A gravitational field exists for the

man in the chest, despite the fact that there was

no such field for the co-ordinate system first

chosen. Now we might easily suppose that the

existence of a gravitational field is always only

an apparent one. We might also think that,

regardless of the kind of gravitational field which

may be present, we could always choose another

reference-body such that no gravitational field

exists with reference to it. This is by no means

true for aU gravitational fields, but only for those

of quite special form. It is, for mstance, im-

possible to choose a body of reference such that,

as judged from it, the gravitational field of the

earth (in its entirety) vanishes.

We can now appreciate why that argument is

not convincing, which we brought forward against

the general principle of relativity at the end of

Section XVIII. It is certainly true that the

observer in the railway carriage experiences a

jerk forwards as a result of the application of the
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brake, and that he recognises in this the non-

umformity of motion (retardation) of the carriage.

But he is compelled by nobody to refer this jerk

to a "real" acceleration (retardation) of the

carriage. He might also interpret his experience

thus: "My body of reference (the carriage)

remains permanently at rest. With reference to

it, however, there exists (during the period of

application of the brakes) a gravitational field

which is directed forwards and which is variable

with respect to time. Under the influence of this

field, the embankment together with the earth

moves non-uniformly in such a manner that their

original velocity in the backwards direction is

continuously reduced."



XXI

IN WHAT RESPECTS ARE THE FOUNDATIONS
OF CLASSICAL MECHANICS AND OF THE
SPECIAL THEORY OF RELATIVITY UN-
SATISFACTORY?

WE have already stated several times that

classical mechanics starts out from the

following law: Material particles suf-

ficiently far removed from other material particles

continue to move uniformly in a straight line

or continue in a state of rest. We have also

repeatedly emphasised that this fundamental law

can only be vahd for bodies of reference K which

possess certain unique states of motion, and which

are in imiform translational motion relative to

each other. Relative to other reference-bodies

K the law is not valid. Both in classical mechanics

and in the special theory of relativity we there-

fore differentiate between reference-bodies K
relative to which the recognised "laws of nature"

can be said to hold, and reference-bodies K
relative to which these laws do not hold.

But no person whose mode of thought is logical

can rest satisfied with this condition of things.

He asks: "How does it come that certain refer-
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ence-bodies (or their states of motion) are given

priority over other reference-bodies (or their

states of motion)? What is the reason for this

preference? In order to show clearly what I mean
by this question, I shall make use of a comparison.

I am standing in front of a gas range. Stand-

ing alongside of each other on the range are two

pans so much alike that one may be mistaken for

the other. Both are half full of water. I notice

that steam is being emitted continuously from the

one pan, but not from the other. I am surprised at

this, even if I have never seen either a gas range

or a pan before. But if I now, notice a luminous

something of bluish colour under the first pan but

not under the other, I cease to be astonished, even

if I have never before seen a gas flame. For I

can only say that this bluish something will cause

the emission of the steam, or at least possibly it

may do so. If, however, I notice the bluish

something in neither case, and if I observe that

the one continuously emits steam whilst the

other does not, then I shall remain astonished

and dissatisfied until I have discovered some

circumstance to which I can attribute the different

behaviour of the two pans.

Analogously, I seek in vain for a real something

in classical mechanics (or in the special theory

of relativity) to which I can attribute the different

behaviour of bodies considered with respect to
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the reference-systems K and K'.'^ Newton saw

this objection and attempted to invalidate it, but

without success. But E. Mach recognised it

most clearly of all, and because of this objection

he claimed that mechanics must be placed on a

new basis. It can only be got rid of by means of

a physics which is conformable to the general

principle of relativity, since the equations of such

a theory hold for every body of reference, whatever

may be its state of motion.

1 The objection is of importance more especially when the state

of motion of the reference-body is of such a nature that it does not

require any external agency for its maintenance, e.g. in the case when

the reference-body is rotating uniformly.



XXII

A FEW INFERENCES FROM THE GENERAL
PRINCIPLE OF RELATIVITY

THE considerations of SectionXX show that

the general principle of relativity puts

us in a position to derive properties of the

gravitational field in a purely theoretical manner.

Let us suppose, for instance, that we know the

space-time "course" for any natural process

whatsoever, as regards the manner in which it

takes place in the GaHleian domain relative to a

GaUleian body of reference K. By means of

purely theoretical operations {i.e. simply by cal-

culation) we are then able to find how this known

natural process appears, as seen from a reference-

body K' which is accelerated relatively to K.

But since a gravitational field exists with respect

to this new body of reference K', our consideration

also teaches us how the gravitational field in-

fluences the process studied.

For example, we learn that a body which is

in a state of uniform rectilinear motion with

respect to K (in accordance with the law of

Galilei) is executing an accelerated and in general

8r
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curvilinear motion with respect to the accelerated

reference-body K' (chest). This acceleration or

curvature corresponds to the influence on the

moving body of the gravitational field prevailing

relatively to K' . It is known that a gravita-

tional field influences the movement of bodies in

this way, so that our consideration supplies us

with nothing essentially new.

However, we obtain a new result of fundamental

importance when we carry out the analogous

consideration for a ray of light. With respect

to the Galileian reference-body K, such a ray of

Hght is transmitted rectilinearly with the velocity

c. It can easily be shown that the path of the

same ray of light is no longer a straight line when

we consider it with reference to the accelerated

chest (reference-body i?'). From this we con-

clude, that, in general, rays of light are propagated

curvilinearly in gravitational fields. In two re-

spects this result is of great importance.

In the first place, it can be compared with the

reality. Although a detailed examination of the

question shows that the curvature of light rays

required by the general theory of relativity is

only exceedingly small for the gravitational fields

at our disposal in practice, its estimated magni-

tude for light rays passing the sun at grazing

incidence is nevertheless 1-7 seconds of arc. This

ought to manifest itself in the following way.
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As seen from the earth, certain fixed stars appear

to be in the neighbourhood of the sun, and are

thus capable of observation during a total eclipse

of the sun. At such times, these stars ought to

appear to be displaced outwards from the sun

by an amount indicated above, as compared with

their apparent position in the sky when the sun

is situated at another part of the heavens. The

examination of the correctness or otherwise of

this deduction is a problem of the greatest im-

portance, the early solution of which is to be

expected of astronomers.^

In the second place our result shows that, ac-

cording to the general theory of relativity, the

law of the constancy of the velocity of hght in

vacuo, which constitutes one of the two funda-

mental assiunptions in the special theory of

relativity and to which we have already frequently

referred, cannot claim any unlimited validity.

A curvature of rays of light can only take place

when the velocity of propagation of light varies

with position. Now we might think that as a

consequence of this, the special theory of relativity

and with it the whole theory of relativity would

be laid in the dust. But in reality this is not the

' By means of the star photographs of two expeditions equipped

by a Joint Committee of the Royal and Royal Astronomical Societies,

the existence of the deflection of light demanded by theory was con-

firmed during the solar eclipse of 29th May, 1919. (Cf. Appendix

III.)



90 GENERAL THEORY OF RELATIVITY

case. We can only conclude that the special

theory of relativity cannot claim an unliinited

domaui of validity; its resiilts hold only so long

as we are able to disregard the influences of

gravitational fields on the phenomena {e.g. of

light).

Since it has often been contended by oppo-

nents of the theory of relativity that the special

theory of relativity is overthrown by the general

theory of relativity, it is perhaps advisable to make
the facts of the case clearer by means of an

appropriate comparison. Before the development

of electrodynamics the laws of electrostatics

were looked upon as the laws of electricity.

At the present time we know that electric

fields can be derived correctly from elec-

trostatic considerations only for the case, which

is never strictly realised, in which the electrical

masses are quite at rest relatively to each other,

and to the co-ordinate system. Should we be

justified in saying that for this reason electro-

statics is overthrown by the field-equations of

Maxwell in electrodynamics? Not in the least.

Electrostatics is contained in electrodynamics

as a limiting case; the laws of the latter lead

directly to those of the former for the case in which

the fields are invariable with regard to time.

No fairer destiny covdd be allotted to any physical

theory, than that it should of itself point out the
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way to the introduction of a more comprehensive

theory, in which it lives on as a limiting case.

In the example of the transmission of light just

dealt with, we have seen that the general theory

of relativity enables us to derive theoretically

the influence of a gravitational field on the course

of natural processes, the laws of which are already

known when a gravitational field is absent. But

the most attractive problem, to the solution of

which the general theory of relativity supplies

the key, concerns the investigation of the laws

satisfied by the gravitational field itself. Let us

consider this for a moment.

We are acquainted with space-time domains

which behave (approximately) in a "Galileian"

fashion imder suitable choice of reference-body,

i.e. domains in which gravitational fields are

absent. If we now refer such a domain to a

reference-body K' possessing any kind of motion,

then relative to K' there exists a gravitational

field which is variable with respect to space and

time.* The character of this field will of course

depend on the motion chosen for K'. Accord-

ing to the general theory of relativity, the general

law of the gravitational field must be satisfied

for all gravitational fields obtainable in this way.

Even though by no means all gravitational fields

' This follows from a generalisation of the discussion in Sec-

tion XX.
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can be produced in this way, yet we may enter-

tain the hope that the general law of gravitation

will be derivable from such gravitational fields of

a special kind. This hope has been realised~itt-

the most beautiful _maimer,^ But between the

clear vision of this goal and its actual realisation

it was necessary to surmoimt a serious difi&culty,

and as this lies deep at the root of things, I dare

not withhold it from the reader. We require

to extend our ideas of the space-time continuum

still farther.



xxm
BEHAVIOUR OF CLOCKS AND MEASURING-

RODS ON A ROTATING BODY
OF REFERENCE

HITHERTO I have purposely refrained

from speaking about the physical in-

terpretation of space- and time-data in

the case of the general theory of relativity. As a

consequence, I am guilty of a certain slovenliness

of treatment, which, as we know from the special

theory of relativity, is far from beiug unim-

portant and pardonable. It is now high time

that we remedy this defect; but I would mention

at the outset, that this matter lays no smaU claims

on the patience and on the power of abstraction

of the reader.

We start off again from quite special cases,

which we have frequently used before. Let us

consider a space-time domain in which no gravi-

tational field exists relative to a reference-body

K whose state of motion has been suitably chosen.

K is then a Galileian reference-body as regards

the domain considered, and the results of the

special theory of relativity hold relative to K.

Let us suppose the same domain referred to a
93
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second body of reference K', which is rotating

uniformly with respect to K. In order to fix our

ideas, we shall imagine K' to be in the form of a

plane circular disc, which rotates uniformly in

its own plane about its centre. An observer

who is sitting eccentrically on the disc K' is

sensible of a force which acts outwards in a radial

direction, and which would be interpreted as an

effect of inertia (centrifugal force) by an observer

<vho was at rest with respect to the original

reference-body K. But the observer on the disc

may regard his disc as a reference-body which

is "at rest"; on the basis of the general principle

of relativity he is justified in doing this. The

force acting on himself, and in fact on aU other

bodies which are at rest relative to the disc, he

regards as the effect of a gravitational field.

Nevertheless, the space-distribution of this gravi-

tational field is of a kind that would not be possible

on Newton's theory of gravitation.* But since

the observer beUeves in the general theory of

relativity, this does not disturb him; he is quite

in the right when he beUeves that a general law

of gravitation can be formulated— a law which

not only explains the motion of the stars cor-

rectly, but also the field of force experienced by

himself.

' The field disappears at tlie centre of the disc and increases pro-

portionally to the distance from the centre as v7e proceed outwards.
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The observer performs experiments on his cir-

cular disc with clocks and measuring-rods. In

doing so, it is his intention to arrive at exact

definitions for the signification of time- and

space-data with reference to the circular disc K',

these definitions being based on his observations.

What wiU be his experience in this enterprise?

To start with, he places one of two identically

constructed clocks at the centre of the circular

disc, and the other on the edge of the disc, so that

they are at rest relative to it. We now ask our-

selves whether both clocks go at the same rate

from the standpoint of the non-rotating Galileian

reference-body K. As judged from this body,

the clock at the centre of the disc has no velocity,

whereas the clock at the edge of the disc is in

motion relative to iT in consequence of the rota-

tion. According to a result obtained in Section

XII, it follows that the latter clock goes at a rate

permanently slower than that of the clock at

the centre of the circular disc, i.e. as observed

from K. It is obvious that the same effect would

be noted by an observer whom we will imagine

sitting alongside his clock at the centre of the

circular disc. Thus on our circular disc, or, to

make the case more general, in every gravitational

field, a clock wiU go more quickly or less quickly,

according to the position in which the clock is

situated (at rest). For this reason it is not
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possible to obtain a reasonable definition of time

with the aid of docks which are arranged at

rest with respect to the body of reference. A
similar difficulty presents itself when we attempt

to apply our earlier definition of simultaneity in

such a case, but I do not wish to go any farther

into this question.

Moreover, at this stage the definition of the

space co-ordinates also presents xmsurmoimtable

difficulties. If the observer applies his standard

measuring-rod (a rod which is short as compared

with the radius of the disc) tangentiaUy to the

edge of the disc, then, as judged from the Galileian

system, the length of this rod wiU be less than i,

since, according to Section XII, moving bodies

suffer a shortening in the direction of the motion.

On the other hand, the measuring-rod wiU not

experience a shortening in length, as judged from

K, if it is applied to the disc in the direction of

the radius. If, then, the observer first measures

the circimiference of the disc with his measuring-

rod and then the diameter of the disc, on divid-

ing the one by the other, he wiU not obtain as

quotient the familiar number ir= 3.14 . . ., but

a larger niunber,^ whereas of course, for a disc

which is at rest with respect to K, this operation

' Throughout this consideration we have to use the Galildan

(non-Totating) systemK as reference-body, since we may only assume

the validity of the results of the special theory of relativity relative

to K (relative to £' a gravitational field prevails).



BEHAVIOUR OF CLOCKS AND RODS 97

would yield tt exactly. This proves that the

propositions of Euclidean geometry cannot hold

exactly on the rotating disc, nor in general in a

gravitational field, at least if we attribute the

length I to the rod in all positions and in every

orientation. Hence the idea of a straight line

also loses its meaning. We are therefore not in

a position to define exactly the co-ordinates

X, y, z relative to the disc by means of the method

used in discussing the special theory, and as long

as the co-ordinates and times of events have not

been defined we cannot assign an exact meaning

to the natural laws in which these occur.

Thus all our previous conclusions based on

general relativity would appear to be caUed in

question. In reality we must make a subtle

detour in order to be able to apply the postulate

of general relativity exactly. I shall prepare

the reader for this in the following paragraphs.



XXIV

EUCLIDEAN AND NON-EUCLIDEAN
CONTINUUM

THE surface of a marble table is spread out

in front of me. I can get from any one

point on this table to any other point by

passing continuously from one point to a "neigh-

boiuing" one, and repeating this process a (large)

niunber of times, or, in other words, by going

from point to point without executing jimips."

I am sure the reader will appreciate with sufficient

clearness what I mean here by "neighbouring"

and by "jmnps" (if he is not too pedantic). We
express this property of the surface by describing

the latter as a continuum.

Let us now imagine that a large number of

little rods of equal length have been made, their

lengths being smaU compared with the dimensions

of the marble slab. When I say they are of equal

length, I mean that one can be laid on any other

without the ends overlapping. We next lay four

of these Uttle rods on the marble slab so that they

constitute a quadrilateral figure (a square), the

diagonals of which are equally long. To ensure

the equality of the diagonals, we make use of a
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little testing-rod. To this square we add similar

ones, each of which has one rod in common with

the first. We proceed in like manner with each of

these squares untU finally the whole marble slab

is laid out with squares. The arrangement is

such, that each side of a square belongs to two

squares and each comer to four squares.

It is a veritable wonder that we can carry out

this business without getting into the greatest

difficulties. We only need to think of the fol-

lowing. If at any moment three squares meet

at a comer, then two sides of the fourth square

are already laid, and as a consequence, the ar-

rangement of the remaining two sides of the

square is already completely determined. But

I am now no longer able to adjust the quadrilateral

so that its diagonals may be equal. If they are

equal of their own accord, then this is an especial

favour of the marble slab and of the little rods

about which I can only be thankfully surprised.

We must needs experience many such surprises

if the construction is to be successful.

If everything has really gone smoothly, then

I say that the points of the marble slab constitute a

Euclidean continuiun with respect to the little

rod, which has been used as a "distance" (line-

interval). By choosing one corner of a square as

"origin," I can characterise every other comer

of a square with reference to this origin by means
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of two numbers. I only need state how many
rods I must pass over when, starting from the

origin, I proceed towards the "right" and then

"upwards," in order to arrive at the comer of the

square under consideration. These two numbers

are then the "Cartesian co-ordmates" of this

comer with reference to the "Cartesian co-

ordinate system" which is determined by the

arrangement of Uttle rods.

By making use of the following modification

of this abstract experiment, we recognise that

there must also be cases in which the experiment

would be unsuccessf;il. We shall suppose that

the rods "expand" by an amoimt proportional to

the increase of temperature. We heat the central

part of the marble slab, but not the periphery,

in which case two of our Uttle rods can still be

brought into coincidence at every position on

the table. But our construction of squares must

necessarily come into disorder diuiug the heating,

because the Uttle rods on the central region of

the table expand, whereas those on the outer

part do not.

With reference to our Uttle rods— defined as

imit lengths— the marble slab is no longer a

EucUdean continuum, and we are also no longer

in the position of defining Cartesian co-ordinates

directly with their aid, since the above constmc-

tion can no longer be carried out. But since
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there are other things which are not influenced

in a similar manner to the little rods (or perhaps

not at aU) by the temperature of the table, it is

possible quite naturally to maintain the point of

view that the marble slab is a "EucHdean con-

tinuum." This can be done in a satisfactory

manner by making a more subtle stipulation

about the measurement or the comparison of

lengths.

But if rods of every kind {i.e. of every material)

were to behave in the same way as regards the

influence of temperature when they are on the

variably heated marble slab, and if we had no

other means of detecting the effect of temperature

than the geometrical behaviour of our rods in

experiments analogous to the one described above,

then our best plan woidd be to assign the distance

one to two points on the slab, provided that the

ends of one of our rods could be made to coincide

with these two points; for how else shoidd we

define the distance without our proceeding being

in the highest measure grossly arbitrary? The

method of Cartesian co-ordinates must then be

discarded, and replaced by another which does

not assume the vaUdity of Euclidean geometry

for rigid bodies.^ The reader will notice that

* Mathematicians have been confronted with our problem in the

following form. If we are given a surface (e.g. an ellipsoid) in Eucli-

dean three-dimensional space, then there exists for this surface a

two-dimensional geometry, just as much as for a plane surface.
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the situation depicted here corresponds to the one

brought about by the general postulate of relativity

(Section XXIII).

Gauss undertook the task of treating this two-dimensional geometry

from first principles, without making use of the fact that the surface

belongs to a Euclidean continuum of three dimensions. If we im-

agine constructions to be made with rigid rods in the surface (similar

to that above with the marble slab), we should find that different

laws hold for these from those resulting on the basis of Euclidean

plane geometry. The surface is not a Euclidean continuum with

respect to the rods, and we cannot define Cartesian co-ordinates in

the surface. Gauss indicated the principles according to which we

can treat the geometrical relationships in the surface, and thus

pointed out the way to the method of Riemann of treating multi-

dimensional, non-Euclidean continua. Thus it is that mathemati-

cians long ago solved the formal problems to which we are led by the

general postulate of relativity.



XXV

GAUSSIAN CO-ORDINATES

ACCORDING to Gauss, this combined ana-

lytical and geometrical mode of handling

the problem can be arrived at in the

following way. We imagine a system of arbitrary

ciurves (see Fig. 4) drawn, on the surface of the

table. These we designate as M-curves, and we
indicate each of them by means of a number.

The curves u=i, u=2 and u = ^ are drawn

in the diagram. Between the curves «= i and

u = 2we must imagine an

infinitely large nxmiber to

be drawn, aU of which

correspond to real niun-

bers lying between i and

2. We have then a system

of M-curves, and this "in- " '*'

finitely dense " systern covers the whole surface of

the table. These «<-curves must not intersect each

other, and through each point of the surface one

and only one curve must pass. Thus a perfectly

definite value of u belongs to every point on the

surface of the marble slab. In like manner we
103
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imagine a S5rstem of f-curves drawn on the surface.

These satisfy the same conditions as the «-curves,

they are provided with numbers in a correspond-

ing manner, and they may hkewise be of arbitrary

shape. It follows that a value of u and a value

of V belong to every point on the surface of the

table. We call these two numbers the co-or-

dinates of the surface of the table (Gaussian

co-ordinates). For example, the point P in the

diagram has the Gaussian co-ordinates m = 3,

v=\. Two neighbouring points P and P' on

the surface then correspond to the co-ordinates

P: u, V

P': u -{ du, V -k- dv,

where du and dv signify very small numbers. In

a similar manner we may indicate the distance

(line-interval) between P and P', as measured

with a little rod, by means of the very small

number ds. Then according to Gauss we have

ds^ - fu du^ + 2gi2 du dv + gjz d'^,

where gn, gn, ga, are magnitudes which depend

in a perfectly definite way on u and v. The

magnitudes gn, gvt and ^22 determine the behaviour

of the rods relative to the ^-curves and c-curves,

and thus also relative to the smrface of the table.

For the case in which the points of the smiace

considered form a Euchdean continuum with

reference to the measuring-rods, but only in this

case, it is possible to draw the w-curves and
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»-curves and to attach numbers to them, in such

a manner, that we simply have:

ds^ = du^ + dv^.

Under these conditions, the w-curves and j;-curves

are straight Hnes in the sense of EucHdean geom-

etry, and they are perpendicular to each other.

Here the Gaussian co-ordinates are simply Car-

tesian ones. It is clear that Gauss co-ordinates

are nothing more than an association of two sets

of numbers with the points of the surface con-

sidered, of such a nature that mmierical values

diEEering very sHghtly from each other are asso-

ciated with neighbouring points "in space."

So far, these considerations hold for a con-

tinuum of two dimensions. But the Gaussian

method can be applied also to a continuum of

three, four or more dimensions. If, for instance,

a continuum of four dimensions be supposed

available, we may represent it in the following

way. With every point of the continuum we
associate arbitrarily four numbers, Xi, 0C2, Xz, Xi,

which are known as "co-ordinates." Adjacent

points correspond to adjacent values of the co-

ordinates. If a distance ds is associated with

the adjacent points P and P', this distance being

measurable and well-defined from a physical point

of view, then the following formula holds:

di* -= gu dxi^ + 2gjidxidxt . . . . +gu dxi.
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where the magnitudes gn, etc., have values which

vary with the position in the continuum. Only

when the continuimi is a Euchdean one is it

possible to associate the co-ordinates Xi . . Xt with

the points of the continuum so that we have

simply
ds^ = dxi^ + dxi + dx^ + dx^.

In this case relations hold in the foiir-dimensional

continuimi which are analogous to those holding

in our three-dimensional measurements.

However, the Gauss treatment for ds^ which

we have given above is not always possible. It

is only possible when sufficiently small regions

of the continuum xmder consideration may be

regarded as Euclidean continua. For example,

this obviously holds in the case of the marble slab

of the table and local variation of temperature.

The temperature is practically constant for a

small part of the slab, and thus the geometrical

behaviour of the rods is almost as it ought to be

according to the ndes of Euchdean geometry.

Hence the imperfections of the construction of

squares in the previous section do not show them-

selves clearly imtil this construction is extended

over a considerable portion of the surface of the

table.

We can sum this up as follows: Gauss invented

a method for the mathematical treatment of

continua in general, in which "size-relations"
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("distances" between neighbouring points) are

defined. To every point of a continuum are

assigned as many numbers (Gaussian co-ordi-

nates) as the continuum has dimensions. This

is done in such a way, that only one meaning can

be attached to the assignment, and that niunbers

(Gaussian co-ordinates) which differ by an in-

definitely small amount are assigned to adjacent

points. The Gaussian co-ordinate system is a

logical generaUsation of the Cartesian co-ordinate

system. It is also apphcable to non-Euchdean

continua, but only when, with respect to the

defined "size" or "distance," smaU parts of

the continuiun under consideration behave more

nearly like a Euclidean system, the smaller the

part of the continuum under our notice.



XXVI

THE SPACE-TIME CONTINUUM OF THE SPE-
CIAL THEORY OF RELATIVITY CONSID-
ERED AS A EUCLIDEAN CONTINUUM

WE are now in a position to formulate

more exactly the idea of Minkowski,

which was only vaguely indicated in

Section XVII. In accordance with the special

theory of relativity, certain co-ordinate systems

are given preference for the description of the

four-dimensional, space-time continuimi. We
called these "Galileian co-ordinate systems."

For these systems, the iova co-ordinates x, y,

z, t, which determine an event or— in other

words— a point of the four-dimensional con-

tinuvun, are defined physically in a simple maimer,

as set forth in detail in the first part of this book.

For the transition from one Galileian sjrstem to

another, which is moving imiformly with reference

to the first, the equations of the Lorentz trans-

formation are vaUd. These last form the basis

for the derivation of deductions from the special

theory of relativity, and in themselves they are

nothing more than the expression of the universal

108
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validity of the law of transmission of light for all

Galileian systems of reference.

Minkowski foimd that the Lorentz transforma-

tions satisfy the following simple conditions.

Let us consider two neighbouring events, the

relative position of which in the four-dimensional

continuum is given with respect to a GaUleian

reference-body K by the space co-ordinate dif-

ferences dx, dy, dz and the time-difference dt.

With reference to a second Galileian system we
shall suppose that the corresponding differences

for these two events are dx', dy', dz', dt'. Then

these magnitudes always fulfil the condition.*

(ir^ + dy2 + dz^ -c'df^ dxf^ + dy"" + dz'^ - c" dt'\

The validity of the Lorentz transformation

follows from this condition. We can express this

as follows: The magnitude

ds^ =dx' + dy^ -I- dz' - c^ df,

which belongs to two adjacent points of the four-

dimensional space-time continuiun, has the same

value for all selected (GaUleian) reference-bodies.

If we replace x, y, z, \/~^ ct, by Xi, Xi, Xz, Xi, we

also obtain the result that

ds^ = dxi^ + dxi^ + dxi^ + dxi^

is independent of the choice of the body of refer-

• Cf. Appendices I and 11. The relations which are derived

there for the co-ordinates themselves are valid also for co-ordinate

diferences, and thus also for co-ordinate difEerentials (indefinitely-

small differences).
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ence. We call the magnitude ds the "distance"

apart of the two events or four-dimensional points.

Thus, if we choose as time-variable the im-

aginary variable >/ — i ct instead of the real

quantity t, we can regard the space-time con-

tinuum— in accordance with the special theory

of relativity— as a "Euclidean" four-dimensional

continuum, a result which foUows from the

considerations of the preceding section.



xxvn

THE SPACE-TIME CONTINUUM OF THE
GENERAL THEORY OF RELATIVITY IS

NOT A EUCLIDEAN CONTINUUM

IN
the first part of this book we were able to

make use of space-time co-ordinates which

allowed of a simple and direct physical in-

terpretation, and which, according to Section

XXVI, can be regarded as four-dimensional

Cartesian co-ordinates. This was possible on

the basis of the law of the constancy of the ve-

locity of Hght. But according to Section XXI,

the general theory of relativity cannot retain

this law. On the contrary, we arrived at the

result that according to this latter theory the

velocity of light must always depend on the co-

ordinates when a gravitational field is pres-

ent. In cormection with a specific illustration in

Section XXIII, we found that the presence of

a gravitational field invahdates the definition of

the co-ordinates and the time, which led us to

our objective in the special theory of relativity.

In view of the results of these considerations

we are led to the conviction that, according to

111
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the general principle of relativity, the space-time

continuum cannot be regarded as a Euclidean

one, but that here we have the general case,

corresponding to the marble slab with local

variations of temperature, and with which we
made acquaintance as an example of a two-

dimensional continuiun. Just as it was there

impossible to construct a Cartesian co-ordinate

system from equal rods, so here it is impossible

to build up a system (reference-body) from rigid

bodies and clocks, which shall be of such a nature

that measuring-rods and clocks, arranged rigidly

with respect to one another, shall indicate posi-

tion and time directly. Such was the essence of

the difl&culty with which we were confronted in

Section XXIII.

But the considerations of Sections XXV and

XXVI show us the way to surmount this difl&-

culty. We refer the four-dimensional space-time

continuum in an arbitrary manner to Gauss

co-ordinates. We assign to every point of the

continuiun (event) four mambers, Xi, %, Xt, Xt

(co-ordinates), which have not the least direct

physical significance, but only serve the purpose

of numbering the points of the continuum in a

definite but arbitrary manner. This arrangement

does not even need to be of such a kind that we

must regard Xi, X2, Xs, as "space" co-ordinates

and Xi as a "time" co-ordinate.
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The reader may think that such a description

of the world would be quite inadequate. What
does it mean to assign to an event the particular

co-ordinates Xi, od, %, x^, if in themselves these

co-ordinates have no significance? More careful

consideration shows, however, that this anxiety-

is imfoimded. Let us consider, for instance, a

material point with any kind of motion. If this

point had only a momentary existence without

duration, then it woiild be described in space-

time by a single system of values Xi, oc^, Xs, Xi.

Thus its permanent existence must be char-

acterised by an infinitely large nimiber of such

systems of values, the co-ordinate values of

which are so close together as to give continuity;

corresponding to the material point, we thus have

a (uni-dimensional) line in the four-dimensional

continuima. In the same way, any such lines

in oiur continuum correspond to many points in

motion. The only statements having regard to

these points which can claim a physical existence

are in reality the statements about their en-

counters. In our mathematical treatment, such

an encovmter is expressed in the fact that the

two lines which represent the motions of the

points in question have a particular system of

co-ordinate values, Xi, %, Xz, X4, in common.

After mature consideration the reader will doubt-

less admit that in reality such encounters con-
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stitute the only actual evidence of a time-space

nature with which we meet in physical statements.

When we were describing the motion of a

material ppint relative to a body of reference, we
stated nothing more than the encoxmters of this

point with particular points of the reference-body.

We can also determine the correspondiag values

of the time by the observation of encounters of

the body with clocks, in conjunction with the

observation of the encounter of the hands of

clocks with particular points on the dials. It is

just the same in the case of space-measurements

by means of measuring-rods, as a Uttle considera-

tion will show.

I The following statements hold generally: Every

physical description resolves itself into a number

of statements, each of which refers to the space-

time coincidence of two events A and B. In

terms of Gaussian co-ordinates, every such state-

ment is expressed by the agreement of their four

co-ordinates Xi, %, %, Xi. Thus in reality, the

description of the time-space continuum by

means of Gauss co-ordinates completely replaces

the description with the aid of a body of reference,

without suffering from the defects of the latter

mode of description; it is not tied down to the

Euclidean character of the continuum which has

to be represented.
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EXACT FORMULATION OF THE GENERAL

PRINCIPLE OF RELATIVITY

WE are now in a position to replace the

provisional formulation of the general

principle of relativity given in Section

XVIII by an exact formulation. The form

there used, "All bodies of reference K, K', etc.,

are equivalent for the description of natural

phenomena (formulation of the general laws of

nature), whatever may be their state of motion,"

cannot be maintained, because the use of rigid

reference-bodies, in the sense of the method fol-

lowed in the special theory of relativity, is in

general not possible in space-time description.

The Gauss co-ordinate system has to take the

place of the body of reference. The following

statement corresponds to the fundamental idea

of the general principle of relativity: "All Gaus-

sian co-ordinate systems are essentially equivalent

for the formulation of the general laws of nature."

We can state this general principle of relativity

in stiU another form, which renders it yet more

clearly intelligible than it is when in the form of

H5j
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the natural extension of the special principle

of relativity. According to the special theory of

relativity, the equations which express the general

laws of nature pass over into equations of the

same form when, by making use of the Lorentz

transformation, we replace the space-time variables

X, y, z, t, of a (Galileian) reference-body K by the

space-time variables x', y', z', t', of a new reference-

body K'. According to the general theory of

relativity, on the other hand, by appUcation of

arbitrary substitutions of the Gauss variables Xi,

Xi, Xz, Xi, the equations must pass over into

equations of the same form; for every transfor-

mation (not only the Lorentz transformation)

corresponds to the transition of one Gauss co-ordi-

nate system into another.

If we desire to adhere to our "old-time" three-

dimensional view of things, then we can char-

acterise the development which is being imder-

gone by the fundamental idea of the general

theory of relativity as follows: The special theory

of relativity has reference to Galileian domains,

i.e. to those in which no gravitational field exists.

In this connection a Galileian reference-body

serves as body of reference, i.e. a rigid body the

state of motion of which is so chosen that the

Galileian law of the imifonn rectilinear mo-

tion of "isolated" material points holds relatively

to it.
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Certain considerations suggest that we should

refer the same Galileian domains to non-Galileian

reference-bodies also. A gravitational field of a

special kind is then present with respect to these

bodies (cf. Sections XX and XXIII).

In gravitational fields there are no such things

as rigid bodies with Euclidean properties; thus

the fictitious rigid body of reference is of no avail

in the general theory of relativity. The motion

of clocks is also influenced by gravitational fields,

and in such a way that a physical definition of

time which is made directly with the aid of clocks

has by no means the same degree of plausibility

as in the special theory of relativity.

For this reason non-rigid reference-bodies are

used which are as a whole not only moving in any

way whatsoever, but which also suffer alterations

in form ad lib. during their motion. Clocks, for

which the law of motion is of any kind, however

irregular, serve for the definition of time. We
have to imagine each of these clocks fixed at a point

on the non-rigid reference-body. These clocks

satisfy only the one condition, that the "readings"

which are observed simultaneously on adjacent

clocks (in space) differ from each other by an

indefinitely small amoimt. This non-rigid refer-

ence-body, which might appropriately be termed

a "reference-moUusk," is in the main equivalent

to a Gaussian four-dimensional co-ordinate sys-
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tern chosen arbitrarily. That which gives the

"mollusk" a certain comprehensibleness as com-

pared with the Gauss co-ordinate system is the

(really unjustified) formal retention of the sep-

arate existence of the space co-ordinates as op>-

posed to the time co-ordinate. Every point on

the moUusk is treated as a space-point, and every

material point which is at rest relatively to it as

at rest, so long as the mollusk is considered as

reference-body. The general principle^f rela;:^

tivity requires that all these^mpllu^isxanJiejLised

as fefefencejodiesjmti__egiial right and equal

success in the formulation^f_thg^general laws-oi

natilfe- '^the laws themselves must be quite

indepaident of the choice^ moUusk.

The--gr-ea£^Hpgwig"f>9sses&idl3Bc:die general

principle of relativity hes in the comprehensive

limitation which is imposed on the laws of nature

in consequence of what we have seen^OMCZi;

—
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THE SOLUTION OF THE PROBLEM OF GRAVI-
TATION ON THE BASIS OF THE GENERAL
PRINCIPLE OF RELATIVITY

IF
the reader has followed all our previous

considerations, he will have no further diffi-

culty in understanding the methods leading

to the solution of the problem of gravitation.

We start off from a consideration of a Gahleian

domain, i.e. a domain in which there is no gravita-

tional field relative to the Galileian reference-

body K. The behaviour of measuring-rods and

clocks with reference to K is known from the

special theory of relativity, likewise the behaviour

of "isolated" material points; the latter move
uniformly and in straight lines.

Now let us refer this domain to a random Gauss

co-ordinate system or to a "mollusk" as reference-^

body K'. Then with respect to K' there is a,

gravitational field G (of a particular kind). We
learn the behaviour of measuring-rods and clocks

and also of freely-moving material points with

reference to K' simply by mathematical trans-

formation. We interpret this behaviour as the

119
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behaviour of measuring-rods, clocks and material

points under the influence of the gravitational

field G. Hereupon we introduce a hypothesis:

that the influence of the gravitational field on

measuring-rods, clocks and freely-moving material

points continues to take place according to the

same laws, even in the case when the prevailing

gravitational field is not derivable from the

GaUleian special case, simply by means of a

transformation of co-ordinates.

The next step is to investigate the space-time

behaviour of the gravitational field G, which was

derived from the GaHleian special case simply by

transformation of the co-ordinates. This be-

haviour is formulated in a law, which is always

valid, no matter how the reference-body (mollusk)

used in the description may be chosen.

This law is not yet the general law of the gravita-

tional field, since the gravitational field imder

consideration is of a special kind. In order to

find out the general law-of-field of gravitation we
still require to obtain a generalisation of the law

as found above. This can be obtained without

caprice, however, by taking into consideration

the following demands:

(a) The required generalisation must likewise

satisfy the general postulate of relativity.

(b) If there is any matter in the domain under

consideration, only its inertial masSj and
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thus according to Section XV only its

energy is of importance for its effect in

exciting a field,

(c) Gravitational field and matter together

must satisfy the law of the conservation

of energy (and of impulse).

Finally, the general principle of relativity per-

mits us to determine the influence of the gravita-

tional field on the course of all those processes

which take place according to known laws when a

gravitational field is absent, i.e. which have

already been fitted into the frame of the special

theory of relativity. In this connection we pro-

ceed in principle according to the method which

has already been explained for measuring-rods,

clocks and freely-moving material points.

The theory of gravitation derived in thl&-way

from the general postulate of relativity^ excels..

not only in its beautyjlttor in removing the defect

attachih^tb classical mechanics which was'brought

to light in Section XXIj nor in interpret^TEe

empirical law of the equality~br~mertial and

gravitational mass; but it has also already ex-

plained a result of observation in astronomy,

against-which classical mechanics is powerless.

If we confine the application of the theory to

the case where the gravitational fields can be

regarded as being weak, and in which all masses

move with respect to the co-ordinate system with
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velocities which are small compared with the

velocity of light, we then obtain as a first ap-

proximation the Newtonian theory. Thus the

latter theory is obtained here without any particu-

lar assumption, whereas Newton had to iatroduce

the hypothesis that the force of attraction between

mutually attracting material points is inversely

proportional to the square of the distance between

them. If we increase the accuracy of the calcu-

lation, deviations from the theory of Newton

make their appearance, practically all of which

must nevertheless escape the test of observation

owing to their smaUness.

We must draw attention here to one of these

deviations. According to Newton's theory, a

planet moves round the sun in an ellipse, which

would permanently maintain its position with

respect to the fixed stars, if we could disregard

the motion of the fixed stars themselves and the

action of the other planets under consideration.

Thus, if we correct the observed motion of the

planets for these two influences, and if Newton's

theory be strictly correct, we ought to obtain

for the orbit of the planet an ellipse, which is

fixed with reference to the fixed stars. This

deduction, which can be tested with great ac-

curacy, has been confirmed for all the planets

save one, with the precision that is capable of

being obtained by the delicacy of observation
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attainable at the present time. The sole ex-

ception is Mercury, the planet which hes nearest

the sun. Since the time of Leverrier, it has been

known that the ellipse corresponding to the orbit

of Mercury, after it has been corrected for the

influences mentioned above, is not stationary with

respect to the fixed stars, but that it rotates ex-

ceedingly slowly in the plane of the orbit and ia

the sense of the orbital motion. The value ob-

tained for this rotary movement of the orbital

ellipse was 43 seconds of arc per century, an

amount ensured to be correct to within a few

seconds of arc. This effect can be explained by

means of classical mechanics only on the as-

sumption of hypotheses which have Uttle proba-

bility, and which were devised solely for this

purpose.

On the basis of the general theory of relativity,

it is found that the eUipse of every planet roimd

the sun must necessarily rotate in the manner

indicated above; that for all the planets, with

the exception of Mercury, this rotation is too

small to be detected with the delicacy of ob-

servation possible at the present time; but that

in the case of Mercury it must amount to 43

seconds of arc per century, a result which is strictly

in agreement with observation.

Apart from this one, it has hitherto been possible

to make only two deductions from the theory
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which admit of being tested by observation, to wit,

the curvature of light rays by the gravitational

field of the sun/ and a displacement of the spectral

lines of Ught reaching us from large stars, as com-

pared with the corresponding lines for Hght pro-

duced in an analogous manner terrestrially {i.e.

by the same kind of molecule). I do not doubt

that these deductions from the theory wiU be'

confirmed also.

' Observed by Eddington and others in igig. (Cf. Appendix

m.)



PART III

CONSIDERATIONS ON THE UNIVERSE
AS A WHOLE

XXX

COSMOLOGICAL DIFFICULTIES OF NEWTON'S
THEORY

APART from the difl&culty discussed in Sec-

tion XXI, there is a second fundamental

difficulty attending classical celestial me-

chanics, which, to the best of my knowledge,

was first discussed in detail by the astronomer

Seeliger. If we ponder over the question as to

how the universe, considered as a whole, is to be

regarded, the first answer that suggests itself to

us is surely this: As^egards_j2ace_(and time)

thejmiyersejs_jnfiiiite. There are stars^evH^^

where, so that the density of matter, although

very variable in detail, is nevertheless on the

average everywhere the same. In other words:

However far we might travel through space, we
shoiild find ever3rwhere an attenuated swarm of

fixed stars of approximately the same kind and

density.

125
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This view is not in harmony with the theory of

Newton. The latter theory rather requires that

the universe should have a kind of centre in which

the density of the stars is a maximimi, and that

as we proceed outwards from this centre the

group-density of the stars should diminish, imtil

finally, at great distances, it is succeeded by an

infinite region of emptiness. Hie^^ar univ^se^

ought to be a finite island in ^le^infinite ocea^jrf

space.^

This conception is in itself not very satisfactory.

It is still less satisfactory becauselTTeads^to the

result that the light emitted by the stars and also

individual stars of the stellar system are per-

petually passing out into infinite space, never

to return, and without ever again coming into

interaction with other objects of nature. ^^_
a finite material universe would be destmgd

to become gradually but systematically^ impQv=_

erished.

1 Proof.— According to the theory of Newton, the number of

'.'lines of force" which come from infinity and terminate in a mass

m is proportional to the mass m. K, on the average, the mass-den-

sity po is constant throughout the imiverse, then a sphere of volume

V will enclose the average mass poF. Thus the number of lines of

force passing through the surface F of the sphere into its interior is

proportional to poK. For vmit area of the surface of the sphere the

nurlber of lines of force which enters the sphere is thus proportional

V
to popOT to peR. Hence the intensity of the field at the surface would

ultimately become infinite with increasing radius R of the sphere,

which is impossible.



NEWTON'S THEORY 127

In order to escape this dilemma, Seeliger sug-

gested a modification of Newton's law, in which

he assumes that for great distances the force of

attraction between two masses diminishes more

rapidly than would result from the inverse square

law. In this way it is possible for the mean
density of matter to be constant everywhere, even

to infinity, without infinitely large gravitational

fields being produced. We thus free ourselves

from the distasteful conception, that the material

universe ought to possess something of the nature

of a centre. Of course we purchase our.emancipa-

tionjfcom the fimdamental difficulties mentioned,

at the cost of a^modification-and-comphcatign of

Newton's law which has neither empirical nor

theoretical foimdation. We can imagine innum-

erable laws which would serve the same piupose,

without our being able to state a reason why one

of them is to be preferred to the others; for any

one of these laws would be foimded just as little

on more general theoretical principles as is the

law of Newton.



XXXI

THE POSSIBILITY OF A "FINITE" AND YET
"UNBOUNDED" UNIVERSE

BUT speculations on the structure of the

universe also move in quite another direc-

tion. The development of non-Euclidean

geometry led to the recognition of the fact,

that we can cast doubt on the infiniteness of

our space without coming into conflict with the

laws of thought or with experience (Riemann,

Hehnholtz). These questions have already been

treated in detail and with unsurpassable lucidity

by Helmholtz and Poincare, whereas I can only

touch on them briefly here.

In the first place, we imagiae an existence in

two-dimensional space. Flat beings with flat

implements, and in particular flat rigid measuring-

rods, are free to move in a plane. For them

nothing exists outside of this plane: that which

they observe to happen to themselves and to their

flat "things" is the aU-rnclusive reaUty of their

plane. In particular, the constructions of plane

Euclidean geometry can be carried out by means

of the rods, e.g. the lattice construction, con-

M8
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sidered in Section XXIV. In contrast to ours,

the universe of these beings is two-dimensional;

but, Uke ours, it extends to infinity. In their

universe there is room for an infinite number of

identical squares made up of rods, i.e. its volume

(surface) is infinite. If these beings say their

universe is "plane," there is sense in the state-

ment, because they mean that they can perform

the constructions of plane Euclidean geometry

with their rods. In this cormection the indi-

vidual rods always represent the same distance,

independently of their position.

Let us consider now a second two-dimensional

existence, but this time on a spherical sxirface

instead of on a plane. The flat beings with their

measuring-rods and other objects fit exactly on

this surface and they are imable to leave it. Their

whole universe of observation extends exclusively

over the surface of the sphere. Are these beings

able to regard the geometry of their universe as

being plane geometry and their rods withal as

the realisation of "distance"? They cannot do

this. For if they attempt to realise a straight

line, they will obtain a curve, which we "three-

dimensional beings" designate as a great circle,

i.e. a self-contained line of definite finite length,

which can be measured up by means of a measur-

ing-rod. Similarly, this universe has a finite

area, that can be compared with the area of a
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square constructed with rods. The great charm
resulting^^from iiris^-consideration jies in the

recognition oljlie^facl-tliat the universe_j;^.Jhes€-~

b^ngsJs^mte'and'yethasno limits.

But the spherical-surface beings do not need

to go on a world-tour in order to perceive that they

are not living in a EucUdean universe. They can

convince themselves of this on every part of their

"world," provided they do not use too small a

piece of it. Starting from a point, they draw

"straight lines" (arcs of circles as judged in

three-dimensional space) of equal length in aU

directions. They wiU call the line joining the

free ends of these lines a "circle." For a plane

surface, the ratio of the circumference of a circle

to its diameter, both lengths being measvu-ed with

the same rod, is, according to Euclidean geometry

of the plane, equal to a constant value ir, which is

independent of the diameter of the circle. On
their spherical smrface our flat beings would find

for this ratio the value

sin

IT
©

(i)

i.e. a smaller value than ir, the difference being

the more considerable, the greater is the radius

of the circle in comparison with the radius R of

the "world-sphere." By means of this relation
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the spherical bemgs can determine the radius of

their universe ("world"), even when only a

relatively small part of their world-sphere is

available for their measurements. But if this

part is very small indeed, they will no longer be

able to demonstrate that they are on a spherical

"world" and not on a EucUdean plane, for a

small part of a spherical surface differs only sUghtly

from a piece of a plane of the same size.

Thus if the spherical-surface beings are living

on a planet of which the solar system occupies

only a negligibly small part of the spherical

universe, they have no means of determining

whether they are Uving in a finite or in an infinite

universe, because the "piece of universe" to

which they have access is in both cases prac-

tically plane, or Euclidean. It follows directly

from this discussion, that for our sphere-beings

the circimaference of a circle first increases with

the radius until the "circumference of the uni-

verse" is reached, and that it thenceforward

gradually decreases to zero for still further in-

creasing values of the radius. During this process

the area of the circle continues to increase more

and more, until finally it becomes equal to the

total area of the whole "world-sphere."

Perhaps the reader will wonder why we have

placed our "beings" on a sphere rather than on

another closed surface. But this choice has its
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justification in the fact that, of all closed sur-

faces, the sphere is unique in possessing the

property that all points on it are equivalent. I

admit that the ratio of the circumference c of a

circle to its radius r depends on r, but for a given

value of r it is the same for all points of the

"world-sphere"; in other words, the "world-

sphere" is a "surface of constant curvature."

To this two-dimensional sphere-universe there

is *a three-dimensional analogy, namely, the

three-dimensional spherical space which was dis-

covered by Riemann. Its points are likewise all

equivalent. It possesses a finite volxmie, which

is determined by its "radius" (sTr^'i?'). Is it pos-

sible to imagine a spherical space? To imagine

a space means nothing else than that we imagine

an epitome of ovx "space" experience, i.e. of

experience that we can have in the movement of

"rigid" bodies. In this sense we can imagine

a spherical space.

Suppose we draw lines or stretch strings in aU

directions from a point, and mark oS from each

of these the distance r with a measuring-rod.

AU the free end-points of these lengths he on a

spherical surface. We can specially measure up

the area (F) of this surface by means of a square

made up of measuring-rods. If the universe is

Euclidean, then F= /\.'irr^; if it is spherical, then

F is always less than 47rr^. With increasing values
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of r, F increases from zero up to a maximum value

which is determined by the "world-radius," but

for still further increasing values of r, the area

gradually diminishes to zero. At first, the straight

lines which radiate from the starting point diverge

farther and farther from one another, but later

they approach each other, and finally they run

together again at a "counter-point" to the start-

ing point. Under such conditions they have

traversed the whole spherical space. It is easily

seen that the three-dimensional spherical space

is quite analogous to the two-dimensional spherical

surface. It is finite {i.e. of finite volume), and

has no bounds.

It may be mentioned that there is yet another

kind of curved space: "eUiptical space." It can

be regarded as a curved space in which the two
" coimter-points " are identical (indistinguishable

from each other). An elliptical imiverse can thus

be considered to some extent as a curved universe

possessing central symmetry.

It follows from what has been said, that closed

spaces without limits are conceivable. From
amongst-these, the spherical space (and the el-

liptical) excels in its simplicity, since all points on

it are_equivalent. As a result of this discussion,

a most interesting question arises for astronomers

and physicists, and that is whether the universe

in which we live is infinite, or whether it is finite
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in the maimer of the spherical universe. Our ex-

perience is far from being sufficient to enable us

to answer this question. But the general theory

of relativity permits of our answering it with a

moderate degree of certainty, and ia this con-

nection the difficulty mentioned in Section XXX
finds its solution.



xxxn

THE STRUCTURE OF SPACE ACCORDING TO
THE GENERAL THEORY OF RELATIVITY

ACCORDING to the general theory of

relativity, the geometrical properties of

space are not independent, but they are

determined by matter. Thus we can draw con-

clusions about the geometrical structure of the

tmiverse only if we base our considerations on

the state of the matter as being something that

is known. We know from experience that, for a

suitably chosen co-ordinate system, the velocities

of the stars are small as compared with the

velocity of transmission of light. We can thus

as a rough approximation arrive at a conclusion

as to the nature of the universe as a whole, if

we treat the matter as being at rest.

We aheady know from our previous discussion

that the behaviour of measuring-rods and clocks

is influenced by gravitational fields, i.e. by the

distribution of matter. This in itself is sufficient

to exclude the possibility of the exact vaUdity of

Euclidean geometry in our universe. But it is

conceivable that our imiverse diEEers only slightly

135
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from a Euclidean one, and this notion seems all

the more probable, since calculations show that

the metrics of surrounding space is influenced

only to an exceedingly small extent by masses

even of the magnitude of our sun. We might

imagine that, as regards geometry, our imiverse

behaves analogously to a surface which is ir-

regularly curved in its individual parts, but which

nowhere departs appreciably from a plane: some-

thing like the rippled surface of a lake. Such a

universe might fittingly be called a quasi-Eu-

clidean imiverse. As regards its space it would

be infinite. But calculation shows that in a

quasi-Euclidean imiverse the average density of

matter would necessarily be nil. Thus such a

universe could not be inhabited by matter every-

where; it would present to us that imsatisfactory

picture which we portrayed in Section XXX.
If we are to have in the universe an average

density of matter which differs from zero, how-

ever small may be that difference, then the

universe cannot be quasi-Euclidean. On the con-

trary, the results of calculation indicate that if

matter be distributed tmiformly, the imiverse

would necessarily be spherical (or elliptical).

Since in reality the detailed distribution of matter

is not uniform, the real imiverse will deviate in

individual parts from the spherical, i.e. the uni-

verse will be quasi-spherical. But it wiU be
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necessarily finite. In fact, the theory suppHes

us with a simple connection ' between the space-

expanse of the universe and the average density

of matter in it.

' For the "radius" R of the universe we obtain the equation

Kp
2

The use of the C.G.S. system in this equation gives - = i-oS.io^';

p is the average density of the matter.
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SIMPLE DERIVATION OF THE LORENTZ
TRANSFORMATION [Supplementary to Sec-

tion XI]

FOR the relative orientation of the co-ordi-

nate systems indicated in Fig. 2, the

aj-axes of both systems permanently co-

incide. In the present case we can di\dde the

problem into parts by considering first only

events which are locaUsed on the a;-axis. Any
such event is represented with respect to the co-

ordinate system K by the abscissa x and the

time t, and with respect to the system K' by the

abscissa x' and the time t'. We require to find

x' and /' when x and t are given.

A light-signal, which is proceeding along the

positive axis of x, is transmitted according to the

equation

x = ct

or

X- ct = O (l).

Since the same light-signal has to be transmitted

relative to K' with the velocity c, the propagation

ISO
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relative to the system K' will be represented by

the analogous formula

x' -d = o (2).

Those space-time points (events) which satisfy

(i) must also satisfy (2). Obviously this wiU be

the case when the relation

{x'-ct')=\{x-ct) (3)

is fulfilled in general, where X indicates a con-

stant; for, according to (3), the disappearance

of {x — ct) involves the disappearance of (a;' — ct').

If we apply quite similar considerations to light

rays which are being transmitted along the

negative a;-axis, we obtain the condition

{x' + ct^ =fi(x + ct) (4).

By adding (or subtracting) equations (3) and (4),

and introducing for convenience the constants a

and b in place of the constants X and n where

X + M
a =

2

we obtain the equations

x' = ax — bct\ ^»
cf = act-bxi «^-

We should thus have the solution of our prob-

lem, if the constants a and b were known. These

result from the following discussion.

For the origin of K' we have permanently

x' = o, and hence according to the first of the

equations (5)
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he
X = —t.

a

If we call V the velocity with which the origin

of K' is moviag relative to K, we then have

"1 w-

The same value v can be obtained from equa-

tion (5), if we calculate the velocity of another

point of K' relative to K, or the velocity (di-

rected towards the negative a;-axis) of a point of

K with respect to K\ In short, we can designate

V as the relative velocity of the two systems.

Furthermore, the principle of relativity teaches

us that, as judged from K, the length of a imit

measuring-rod which is at rest with reference to

K' must be exactly the same as the length, as

judged from K', of a imit measuring-rod which

is at rest relative to K. In order to see how the

points of the x'-axis appear as viewed from K,

we only require to take a "snapshot" of K' from

K; this means that we have to insert a particular

value of t (time of K), e.g. / = o. For this value of

/ we then obtain from the first of the equations (5)

x' = ax.

Two points of the x'-axis which are separated

by the distance Ax'= 1 when measured in the

K' system are thus separated in our instantaneous

photograph by the distance

Aa; = ^ (7).
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But if the snapshot be taken from K'^f^o),

and if we eliminate t from the equations (5),

taking into account the expression (6), we

obtain

From this we conclude that two points on the

a;-axis and separated by the distance i (relative to

K) will be represented on our snapshot by the

distance

Aio'-=a(i--^ (7fl).

But from what has been said, the two snap-

shots must be identical; hence A* in (7) must

be equal to Aa;' in (7a), so that we obtain

a^ = -^, • . (76).

The equations (6) and (7&) determine the con-

stants a and b. By inserting the values of these

constants in (5), we obtain the first and the

fourth of the equations given in Section XI.

0/-=

f~

X -
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Thus we have obtained the Lorentz trans-

formation for events on the aj-axis. It satisfies

the condition

a;'2 _ cV2 = a;2 - c«^ (8a).

The extension of this result, to include events

which take place outside the a;-axis, is obtained by

retaining equations (8) and supplementing them

by the relations

i:i] w-

In this way we satisfy the postulate of the con-

stancy of the velocity of light in vacuo for rays

of Hght of arbitrary direction, both for the system

K and for the system K'. This may be shown in

the following manner.

We suppose a light-signal sent out from the

origin of iT at the time t= o. It will be propa-

gated according to the equation

r = -s/x^ + y^ + z' => ct,

or, if we square this equation, according to the

equation

s? + f + z*-c*^~o (lo).

It is required by the law of propagation of light,

in conjimction with the postulate of relativity,

that the transmission of the signal in question

should take place— as judged from K'— in

accordance with the corresponding formula

/ = d'

or,

a/2 4- y'« + s'2 _ CV« = O .... (lOffl).
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In order that equation (loo) may be a consequence

of equation (lo), we must have
*'« + y"' + z'" - c^/'' = ffCr! + ys + z« - c«^) (ii).

Since equation (8a) must hold for points on the

jc-axis, we thus have a = i. It is easily seen

that the Lorentz transformation really satisfies

equation (ii) for o-= i; for (ii) is a consequence

of (8a) and (9), and hence also of (8) and (9).

We have thus derived the Lorentz transformation.

The Lorentz transformation represented by

(8) and (9) stiU requires to be generaUsed. Ob-

viously it is immaterial whether the axes of K'

be chosen so that they are spatially parallel to

those of K. It is also not essential that the

velocity of translation of K' with respect to K
should be in the direction of the a;-axis. A simple

consideration shows that we are able to construct

the Lorentz transformation in this general sense

from two kinds of transformations, viz. from

Lorentz transformations in the special sense and

from purely spatial transformations, which cor-

responds to the replacement of the rectangular

co-ordinate system by a new system with its

axes pointing in other directions.

Mathematically, we can characterise the gen-

eralised Lorentz transformation thus:

It expresses x', y', z' , t', in terms of linear

homogeneous functions of x, y, z, t, of such a kind

that the relation
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is satisfied identically. That is to say: If we
substitute their expressions in x, y, z, t, in place of

x', y', z', t', on the left-hand side, then the left-

hand side of (no) agrees with the right-hand side.
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MINKOWSKI'S FOUR— DIMENSIONAL SPACE
("WORLD") [Supplementary to Section XVII]

WE can characterise the Lorentz trans-

formation still more simply if we in-

troduce the imaginary V — i. ct in place

of t, as time-variable. If, in accordance with

this, we insert

Xi " y
xz " z

Xi - V— i.d,

and similarly for the accented system K', then the

condition which is identically satisfied by the

transformation can be expressed thus:

xi'^ + %'" + x»'^ + ««'« - Xi' + xa^ + x^ + x^. (12).

That is, by the afore-mentioned choice of "co-

ordinates " (iia) is transformed into this equation.

We see from (12) that the imaginary time co-

ordinate Xi enters into the condition of trans-

formation in exactly the same way as the space

co-ordinates Xi, %, Xz. It is due to this fact that,

according to the theory of relativity, the "time"
116
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Xi enters into natural laws in the same fonn as

the space co-ordinates Xi, x^, x^.

A four-dimensional continuum described by the

"co-ordinates" Xi, %, x^, Xi, was called "world"

by Minkowski, who also termed a point-event a

"world-point." From a "happening" in three-

dimensional space, physics becomes, as it were,

an "existence" in the four-dimensional "world."

This four-dimensional "world" bears a close

similarity to the three-dimensional "space" of

(Euclidean) analytical geometry. If we intro-

duce into the latter a new Cartesian co-ordinate

system {x\, x'2, x'3) with the same origin, then

x\, x'z, x'z, are linear homogeneous functions of

Xi, Xi, Xs, which identically satisfy the equation

Xi'^ + Xi'^ + JCs" = Xi^ + X2^ + xi.

The analogy with (12) is a complete one. We
can regard Minkowski's "world" in a formal

manner as a four-dimensional EucUdean space

(with imaginary time co-ordinate); the Lorentz

transformation corresponds to a "rotation" of

the co-ordinate system in the four-dimensional

"world."
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THE EXPERIMENTAL CONFIRMATION OF THE
GENERAL THEORY OF RELATIVITY

FROM a systematic theoretical point of

view, we may imagine the process of

evolution of an empirical science to be a

continuous process of induction. Theories are

evolved, and are expressed in short compass as

statements of a large number of individual ob-

servations in the form of empirical laws, from

which the general laws can be ascertained by

comparison. Regarded in this way, the develop-

ment of a science bears some resemblance to the

compilation of a classified catalogue. It is, as

it were, a purely empirical enterprise.

But this point of view by no means embraces

the whole of the actual process; for it slurs over

the important part played by intuition and

deductive thought in the development of an

exact science. As soon as a science has emerged

from its initial stages, theoretical advances are

no longer achieved merely by a process of arrange-

ment. Guided by empirical data, the investigator

rather develops a system of thought which, in

148
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general, is built up logically from a small number

of fundamental assumptions, the so-called axioms.

We call such a system of thought a theory. The
theory finds the justification for its existence in

the fact that it correlates a large number of single

observations, and it is just here that the "truth"

of the theory hes.

Corresponding to the same complex of empirical

data, there may be several theories, which differ

from one another to a considerable extent. But

as regards the deductions from the theories which

are capable of being tested, the agreement be-

tween the theories may be so complete, that it

becomes difficult to fiind such deductions in which

the two theories differ from each other. As an

example, a case of general interest is available in

the province of biology, in the Darwinian theory

of the development of species by selection in

the struggle for existence, and in the theory of

development which is based on the hypothesis

of the hereditary transmission of acquired char-

acters.

We have another instance of far-reaching

agreement between the deductions from two

theories in Newtonian mechanics on the one hand,

and the general theory of relativity on the other.

This agreement goes so far, that up to the present

we have been able to find only a few deductions

from the general theory of relativity which are



150 APPENDIX in

capable of investigation, and to which the physics

of pre-relativity days does not also lead, and

this despite the profound difference in the funda-

mental assumptions of the two theories. In

what foUows, we shall again consider these im-

portant deductions, and we shall also discuss

the empirical evidence appertaining to them

which has hitherto been obtained.

(a) Motion of the Perihelion of Mercury

According to Newtonian mechanics and New-

ton's law of gravitation, a planet which is revolving

round the sim would describe an ellipse round the

latter, or, more correctly, round the common

centre of gravity of the sun and the planet. In

such a system, the svm, or the common centre of

gravity, Ues in one of the foci of the orbital ellipse

in such a manner that, in the course of a planet-

year, the distance sun-planet grows from a mini-

mxmi to a maximum, and then decreases again

to a rriiriiTmnn . If instead of Newton's law we

insert a somewhat different law of attraction into

the calculation, we find that, according to this

new law, the motion would still take place in such

a manner that the distance sim-planet exhibits

periodic variations; but in this case the angle

described by the line joining sun and planet

during such a period (from perihelion— closest
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proximity to the sun— to perihelion) would

differ from 360°. The line of the orbit would not

then be a closed one, but in the course of time

it would fiU up an annular part of the orbital

plane, viz. between the circle of least and the

circle of greatest distance of the planet from

the sun.

According also to the general theory of relativity,

which differs of course from the theory of Newton,

a small variation from the Newton-Kepler mo-

tion of a planet in its orbit should take place, and

in such a way, that the angle described by the

radius sun-planet between one perihehon and the

next should exceed that corresponding to one

complete revolution by an amount given by

{N.B.— One complete revolution corresponds

to the angle 2 tt in the absolute angular measure

customary in physics, and the above expression

gives the amount by which the radius sun-planet

exceeds this angle during the interval between

one perihehon and the next.) In this expression

a represents the major semi-axis of the eUipse,

e its eccentricity, c the velocity of Hght, and T
the period of revolution of the planet. Our

result may also be stated as follows: According

to the general theory of relativity, the major axis

of the ellipse rotates roimd the sun in the same
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sense as the orbital motion of the planet. Theory

requires that this rotation shoiild amount to 43
seconds of arc per century for the planet Mercury,

but for the other planets of our solar system its

magnitude should be so small that it would

necessarily escape detection.^

In point of fact, astronomers have foimd that

the theory of Newton does not suffice to cal-

culate the observed motion of Mercury with an

exactness corresponding to that of the delicacy

of observation attainable at the present time.

After taking account of all the disturbing in-

fluences exerted on Mercury by the remaining

planets, it was foimd (Leverrier— 1859— ^^d

Newcomb— 1895) that an vinexplained periheUal

movement of the orbit of Mercury remained over,

the amount of which does not differ sensibly from

the above-mentioned + 43 seconds of arc per

century. The uncertainty of the empirical result

amounts to a few seconds only.

(b) Deflection of Light Sy a
Gravitational Field

In Section XXII it has been aheady mentioned

that, according to the general theory of relativity,

a ray of light wiU experience a curvature of its

* Especially since the next planet Venus has an orbit that is

almost an exact circle, which makes it more difficult to locate the

perihelion with precision.
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path when passing through a gravitational field,

this curvature being similar to that experienced

by the path of a body which is projected through

a gravitational field. As a result of this theory,

we should expect that a ray of light which is

passing close to a heavenly body would be deviated

towards the latter. For a ray of fight which

passes the sun at a distance of A sun-radii from

its centre, the angle of deflection (a) should

amoimt to

I • 7 seconds of arc
a ^

It may be added that, according to the theory,

half of this deflection is produced by the New-

tonian field of attraction of the

sun, and the other half by the }

geometrical modification ("curva- i •

ture ") of space caused by the sun. /

This result admits of an experi- / /

mental test by means of the /-^^''

photographic registration of stars 7/
during a total eclipse of the sxm. ^//Dj,

The only reason why we must /'

wait for a total ecHpse is because ^
at every other time the atmos- Ym. $.

phere is so strongly illvmiinated

by the light from the sim that the stars situated

near the sun's disc are invisible. The predicted

effect can be seen clearly from the accompanying
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diagram. If the sun (5) were not present, a star

which is practically iir&nitely distant would be

seen in the direction A, as observed from the

earth. But as a consequence of the deflection of

light from the star by the sim, the star will be

seen in the direction A, i.e. at a somewhat greater

distance from the centre of the sim than corre-

sponds to its real position.

In practice, the question is tested in the fol-

lowing way. The stars in the neighbourhood of

the sun are photographed during a solar ecUpse.

In addition, a second photograph of the same

stars is taken when the sun is situated at another

position in the sky, i.e. a few months earlier or

later. As compared with the standard photograph,

the positions of the stars on the eclipse-photograph

ought to appear displaced radially outwards

(away from the centre of the sun) by an amount

corresponding to the angle a.

We are indebted to the Royal Society and to

the Royal Astronomical Society for the investiga-

tion of this important deduction. Undaunted

by the war and by difficulties of both a material

and a psychological nature aroused by the war,

these societies equipped two expeditions— to

Sobral (Brazil) and to the island of Principe

(West Africa)— and sent several of Britain's

most celebrated astronomers (Eddington, Cotting-

ham, Crommelin, Davidson), in order to obtain
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photographs of the solar eclipse of 29th May,

1919. The relative discrepancies to be expected

between the stellar photographs obtained during

the eclipse and the comparison photographs

amounted to a few hundredths of a millimetre

only. Thus great accuracy was necessary in

making the adjustments required for the taking

of the photographs, and in their subsequent

measurement.

The results of the measurements confirmed the

theory in a thoroughly satisfactory manner. The
rectangular components of the observed and of

the calculated deviations of the stars (in seconds

of arc) are set forth in the following table of

results:

Number of the
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tion, and which are considered at rest with respect

to the rotating reference-body, go at rates which

are dependent on the positions of the clocks. We
shall now examine this dependence quantitatively.

A clock, which is situated at a distance r from the^

centre of the disc, has a velocity relative to K
which is given by

where ci> represents the angular velocity of rotation

of the disc Z' with respect XaK. If I'o represents the

number of ticks of the clock per imit time ("rate"

of the clock) relative to K when the clock is at

rest, then the "rate" of the clock iy) when it is

moving relative to K with a velocity v, but at rest

with respect to the disc, will, in accordance with

Section XII, be given by

or with sufficient accuracy by

This expression may also be stated in the fol-

lowing form:

If we represent the difference of potential of the

centrifugal force between the position of the clock

and the centre of the disc by <^, i.e. the work,
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considered negatively, which must be performed

on the unit of mass against the centrifugal force

in order to transport it from the position of the

clock on the rotating disc to the centre of the disc,

then we have

<!> =-—
From this it follows that

In the first place, we see from this expression that

two clocks of identical construction will go at

different rates when situated at different distances

from the centre of the disc. This result is also

valid from the standpoint of an observer who is

rotating with the disc.

Now, as judged from the disc, the latter is in a

gravitational field of potential <[>, hence the result

we have obtained will hold quite generally for

gravitational fields. Furthermore, we can regard

an atom which is emitting spectral lines as a

clock, so that the following statement will

hold:

An atom absorbs or emits light of a frequency

which is dependent on the potential of the gravita-

tionalfield in which it is situated.

The frequency of an atom situated on the

surface of a heavenly body will be somewhat

less than the frequency of an atom of the same
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element which is situated in free space (or on the

surface of a smaller celestial body).

M
Now 4>= - K—, where K is Newton's constant of

gravitation, and M is the mass of the heavenly

body. Thus a displacement towards the red ought

to take place for spectral lines produced at the

surface of stars as compared with the spectral lines

of the same element produced at the surface of

the earth, the amoimt of this displacement being

Va-v KM
Vo ^ r

For the sun, the displacement towards the red

predicted by theory amotmts to about two mil-

lionths of the wave-length. A trustworthy cal-

culation is not possible in the case of the stars,

because in general neither the mass M nor the

radius r is known. ^

It is an open question whether or not this effect

exists, and at the present time astronomers are

working with great zeal towards the solution.

Owing to the smaUness of the effect in the case of

the sun, it is difficult to form an opinion as to its

existence. Whereas Grebe and Bachem (Bonn),

as a result of their own measurements and those

of Evershed and Schwarzschild on the cyanogen

bands, have placed the existence of the effect

almost beyond doubt, other investigators, par-
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ticularly St. John, have been led to the opposite

opinion in consequence of their measurements.

Mean displacements of lines towards the less

refrangible end of the spectrum are certainly

revealed by statistical investigations of the fixed

stars; but up to the present the examination of

the available data does not aUow of any definite

decision being arrived at, as to whether or not

these displacements are to be referred in reaUty

to the effect of gravitation. The results of ob-

servation have been collected together, and dis-

cussed in detail from the standpoint of the ques-

tion which has been engaging our attention here,

in a paper by E. Fretmdlich entitled "Zur Priifung

der aUgemeinen Relativitats-Theorie" (Die Na-

turwissenschaften, 1919, No. 35, p. 520: Julius

Springer, Berlin).

At aU events, a definite decision will be reached

during the next few years. If the displacement

of spectral lines towards the red by the gravita-

tional potential does not exist, then the general

theory of relativity will be untenable. On the

other hand, if the cause of the displacement of

spectral lines be definitely traced to the gravita-

tional potential, then the study of this displace-

ment will furnish us with important information

as to the mass of the heavenly bodies.
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